期刊文献+
共找到797篇文章
< 1 2 40 >
每页显示 20 50 100
Multi-Objective Optimization of Multi-Product Parallel Disassembly Line Balancing Problem Considering Multi-Skilled Workers Using a Discrete Chemical Reaction Optimization Algorithm
1
作者 Xiwang Guo Liangbo Zhou +4 位作者 Zhiwei Zhang Liang Qi Jiacun Wang Shujin Qin Jinrui Cao 《Computers, Materials & Continua》 SCIE EI 2024年第9期4475-4496,共22页
This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled workers.A mathematical model for the parallel disassembly line is established to achieve maximized disassemb... This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled workers.A mathematical model for the parallel disassembly line is established to achieve maximized disassembly profit and minimized workstation cycle time.Based on a product’s AND/OR graph,matrices for task-skill,worker-skill,precedence relationships,and disassembly correlations are developed.A multi-objective discrete chemical reaction optimization algorithm is designed.To enhance solution diversity,improvements are made to four reactions:decomposition,synthesis,intermolecular ineffective collision,and wall invalid collision reaction,completing the evolution of molecular individuals.The established model and improved algorithm are applied to ball pen,flashlight,washing machine,and radio combinations,respectively.Introducing a Collaborative Resource Allocation(CRA)strategy based on a Decomposition-Based Multi-Objective Evolutionary Algorithm,the experimental results are compared with four classical algorithms:MOEA/D,MOEAD-CRA,Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA-Ⅱ),and Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ).This validates the feasibility and superiority of the proposed algorithm in parallel disassembly production lines. 展开更多
关键词 parallel disassembly line balancing problem MULTI-PRODUCT multiskilled workers discrete chemical reaction optimization algorithm
下载PDF
Multi-objective Optimization of a Parallel Ankle Rehabilitation Robot Using Modified Differential Evolution Algorithm 被引量:13
2
作者 WANG Congzhe FANG Yuefa GUO Sheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第4期702-715,共14页
Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitati... Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements. 展开更多
关键词 ankle rehabilitation parallel robot multi-objective optimization differential evolution algorithm
下载PDF
PARALLEL IMPLEMENTATION AND OPTIMIZATION OF THE SEBVHOS ALGORITHM 被引量:2
3
作者 Li Wen Guo Li Yuan Hongxing Wei Yifang Guan Hua 《Journal of Electronics(China)》 2011年第3期277-283,共7页
In this paper, a parallel Surface Extraction from Binary Volumes with Higher-Order Smoothness (SEBVHOS) algorithm is proposed to accelerate the SEBVHOS execution. The original SEBVHOS algorithm is parallelized first, ... In this paper, a parallel Surface Extraction from Binary Volumes with Higher-Order Smoothness (SEBVHOS) algorithm is proposed to accelerate the SEBVHOS execution. The original SEBVHOS algorithm is parallelized first, and then several performance optimization techniques which are loop optimization, cache optimization, false sharing optimization, synchronization overhead op-timization, and thread affinity optimization, are used to improve the implementation's performance on multi-core systems. The performance of the parallel SEBVHOS algorithm is analyzed on a dual-core system. The experimental results show that the parallel SEBVHOS algorithm achieves an average of 1.86x speedup. More importantly, our method does not come with additional aliasing artifacts, com-paring to the original SEBVHOS algorithm. 展开更多
关键词 MULTI-CORE parallel algorithm Performance optimization 3D reconstruction
下载PDF
Chaotic migration-based pseudo parallel genetic algorithm and its application in inventory optimization 被引量:1
4
作者 ChenXiaofang GuiWeihua WangYalin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期411-417,共7页
Considering premature convergence in the searching process of genetic algorithm, a chaotic migration-based pseudo parallel genetic algorithm (CMPPGA) is proposed, which applies the idea of isolated evolution and infor... Considering premature convergence in the searching process of genetic algorithm, a chaotic migration-based pseudo parallel genetic algorithm (CMPPGA) is proposed, which applies the idea of isolated evolution and information exchanging in distributed Parallel Genetic Algorithm by serial program structure to solve optimization problem of low real-time demand. In this algorithm, asynchronic migration of individuals during parallel evolution is guided by a chaotic migration sequence. Information exchanging among sub-populations is ensured to be efficient and sufficient due to that the sequence is ergodic and stochastic. Simulation study of CMPPGA shows its strong global search ability, superiority to standard genetic algorithm and high immunity against premature convergence. According to the practice of raw material supply, an inventory programming model is set up and solved by CMPPGA with satisfactory results returned. 展开更多
关键词 parallel genetic algorithm CHAOS premature convergence inventory optimization.
下载PDF
Parallel discrete lion swarm optimization algorithm for solving traveling salesman problem 被引量:2
5
作者 ZHANG Daoqing JIANG Mingyan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第4期751-760,共10页
As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optim... As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time. 展开更多
关键词 discrete lion swarm optimization(DLSO)algorithm complete 2-opt(C2-opt)algorithm parallel discrete lion swarm optimization(PDLSO)algorithm traveling salesman problem(TSP)
下载PDF
Series-parallel Hybrid Vehicle Control Strategy Design and Optimization Using Real-valued Genetic Algorithm 被引量:14
6
作者 XIONG Weiwei YIN Chengliang ZHANG Yong ZHANG Jianlong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第6期862-868,共7页
Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been... Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles. 展开更多
关键词 series-parallel hybrid electric vehicle control strategy DESIGN optimization real-valued genetic algorithm
下载PDF
Niche pseudo-parallel genetic algorithms for path optimization of autonomous mobile robot 被引量:1
7
作者 沈志华 赵英凯 吴炜炜 《Journal of Shanghai University(English Edition)》 CAS 2006年第5期449-453,共5页
A new genetic algorithm named niche pseudo-parallel genetic algorithm (NPPGA) is presented for path evolution and genetic optimization of autonomous mobile robot. The NPPGA is an effective improvement to maintain th... A new genetic algorithm named niche pseudo-parallel genetic algorithm (NPPGA) is presented for path evolution and genetic optimization of autonomous mobile robot. The NPPGA is an effective improvement to maintain the population diversity as well for the sake of avoiding premature and strengthen parallelism of the population to accelerate the search process combined with niche genetic algorithms and pseudo-parallel genetic algorithms. The proposed approach is evaluated by robotic path optimization, which is a specific application of traveler salesman problem (TSP). Experimental results indicated that a shortest path could be obtained in the practical traveling salesman problem named "Robot tour around Pekin", and the performance conducted by NPPGA is better than simple genetic algorithm (SGA) and distributed paralell genetic algorithms (DPGA). 展开更多
关键词 genetic algorithms traveler salesman problem (TSP) path optimization NICHE pseudo-parallel.
下载PDF
Asynchronous Parallel Evolutionary Algorithms for Constrained Optimizations
8
作者 Kang Li-shan Liu Pu +2 位作者 Kang Zhuo Li Yan Chen Yu-ping 《Wuhan University Journal of Natural Sciences》 EI CAS 2000年第4期406-412,共7页
Recently Guo Tao proposed a stochastic search algorithm in his PhD thesis for solving function optimization problems. He combined the subspace search method (a general multi-parent recombination strategy) with the pop... Recently Guo Tao proposed a stochastic search algorithm in his PhD thesis for solving function optimization problems. He combined the subspace search method (a general multi-parent recombination strategy) with the population hill-climbing method. The former keeps a global search for overall situation, and the latter keeps the convergence of the algorithm. Guo's algorithm has many advantages, such as the simplicity of its structure, the higher accuracy of its results, the wide range of its applications, and the robustness of its use. In this paper a preliminary theoretical analysis of the algorithm is given and some numerical experiments has been done by using Guo's algorithm for demonstrating the theoretical results. Three asynchronous parallel evolutionary algorithms with different granularities for MIMD machines are designed by parallelizing Guo's Algorithm. 展开更多
关键词 asynchronous parallel evolutionary algorithm function optimization
下载PDF
Workspace optimization of parallel robot by using multi-objective genetic algorithm
9
作者 WANG Jinhong LEI Jingtao 《High Technology Letters》 EI CAS 2022年第4期411-417,共7页
For the narrow workspace problem of the universal-prismatic-universal(UPU)parallel robotwith fixed orientation,a kind of multi-objective genetic algorithm is studied to optimize the robot’sworkspace.The concept of th... For the narrow workspace problem of the universal-prismatic-universal(UPU)parallel robotwith fixed orientation,a kind of multi-objective genetic algorithm is studied to optimize the robot’sworkspace.The concept of the effective workspace and its solution method are given.The effectiveworkspace height(EWH)and global condition number index(GCI)of Jacobi matrix are selected asthe optimized objective functions.Setting the robot in two different orientations,the geometric pa-rameters are optimized by the multi-objective genetic algorithm named non-dominated sorting geneticalgorithm II(NSGA-II),and a set of structural parameters is obtained.The optimization results areverified by four indicators with the robot’s moving platform at different orientations.The resultsshow that,after optimization,the fixed-orientation workspace volume,the effective workspace heightand the effective workspace volume increase by 32.4%,17.8%and 72.9%on average,respec-tively.GCI decreases by 6.8%on average. 展开更多
关键词 parallel robot multi-objective genetic algorithm workspace optimization
下载PDF
Research on Grid Planning of Dual Power Distribution Network Based on Parallel Ant Colony Optimization Algorithm
10
作者 Shuaixiang Wang 《Journal of Electronic Research and Application》 2023年第1期32-41,共10页
A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the s... A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement. 展开更多
关键词 parallel ant colony optimization algorithm Dual power sources Distribution network Grid planning
下载PDF
OPTIMAL ALGORITHM FOR NO TOOl-RETRACTIONS CONTOUR-PARALLEL OFFSET TOOL-PATH LINKING 被引量:8
11
作者 HAO Yongtao JIANG Lili 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期21-25,共5页
A contour-parallel offset (CPO) tool-path linking algorithm is derived without toolretractions and with the largest practicability. The concept of "tool-path loop tree" (TPL-tree) providing the information on th... A contour-parallel offset (CPO) tool-path linking algorithm is derived without toolretractions and with the largest practicability. The concept of "tool-path loop tree" (TPL-tree) providing the information on the parent/child relationships among the tool-path loops (TPLs) is presented. The direction, tool-path loop, leaf/branch, layer number, and the corresponding points of the TPL-tree are introduced. By defining TPL as a vector, and by traveling throughout the tree, a CPO tool-path without tool-retractions can be derived. 展开更多
关键词 Contour-parallel offset machining Tool-path loops Tool-path loop tree optimal algorithm
下载PDF
Parallel Distributed Implementation of Truss Optimization on a Local Area Network
12
作者 唐天兵 韦凌云 +1 位作者 严毅 韦日钰 《Journal of Southwest Jiaotong University(English Edition)》 2004年第2期101-106,共6页
A two-level optimization method for the design of complex truss and parallel distributed implementation on a LAN is presented using parallel virtual machine (PVM) for Win 32 as message passing between PCs. The volu... A two-level optimization method for the design of complex truss and parallel distributed implementation on a LAN is presented using parallel virtual machine (PVM) for Win 32 as message passing between PCs. The volumes of truss are minimized by decomposing the original optimization problem into a number of bar optimization problems executed concurrently and a coordinate optimization problem, subject to constraints on nodal displacements, and stresses, buckling and crippling of bars, etc. The system sensitivity analysis that derives the partial derivatives of displacements and stresses with respect to areas are also performed in parallel so as to shorten the analysis time. The convergence and the speedup performances as well as parallel computing efficiency of the method are investigated by the optimization examples of a 52-bar planar truss and a 3 126-bar three-dimensional truss. The results show that the ideal speedup is obtained in the cases of 2 PCs for the 3 126-bar space truss optimization, while no speedup is observed for the 52-bar truss. It!is concluded that (1) the parallel distributed algorithm proposed is efficient on the PC-based LAN for the coarse-grained large optimization problem; (2) to get a high speedup, the problem granularity should match with the network granularity; and (3) the larger the problem size is, the higher the parallel efficiency is. 展开更多
关键词 TRUSS PVM parallel distributed algorithm optimization
下载PDF
A Fast and Efficient Global Router for Congestion Optimization 被引量:2
13
作者 许静宇 鲍海云 +3 位作者 洪先龙 蔡懿慈 经彤 顾钧 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2002年第2期136-142,共7页
An efficient parallel global router using random optimization that is independent of net ordering is proposed.Parallel approaches are described and strategies guaranteeing the routing quality are discussed.The wire le... An efficient parallel global router using random optimization that is independent of net ordering is proposed.Parallel approaches are described and strategies guaranteeing the routing quality are discussed.The wire length model is implemented on multiprocessor,which enables the algorithm to approach feasibility of large scale problems.Timing driven model on multiprocessor and wire length model on distributed processors are also presented.The parallel algorithm greatly reduces the run time of routing.The experimental results show good speedups with no degradation of the routing quality. 展开更多
关键词 global routing congestion optimizing global routing graph (GRG) parallel algorithm
下载PDF
An Approach of Distributed Joint Optimization for Cluster-based Wireless Sensor Networks 被引量:11
14
作者 Zhixin Liu Yazhou Yuan +1 位作者 Xinping Guan Xinbin Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第3期267-273,共7页
Wireless sensor networks (WSNs) are energyconstrained, so energy saving is one of the most important issues in typical applications. The clustered WSN topology is considered in this paper. To achieve the balance of en... Wireless sensor networks (WSNs) are energyconstrained, so energy saving is one of the most important issues in typical applications. The clustered WSN topology is considered in this paper. To achieve the balance of energy consumption and utility of network resources, we explicitly model and factor the effect of power and rate. A novel joint optimization model is proposed with the protection for cluster head. By the mean of a choice of two appropriate sub-utility functions, the distributed iterative algorithm is obtained. The convergence of the proposed iterative algorithm is proved analytically. We consider general dual decomposition method to realize variable separation and distributed computation, which is practical in large-scale sensor networks. Numerical results show that the proposed joint optimal algorithm converges to the optimal power allocation and rate transmission, and validate the performance in terms of prolonging of network lifetime and improvement of throughput. © 2014 Chinese Association of Automation. 展开更多
关键词 algorithmS Distributed computer systems Energy conservation Energy utilization Iterative methods optimization parallel algorithms Power control
下载PDF
Grid-Based Pseudo-Parallel Genetic Algorithm and Its Application 被引量:1
15
作者 陈海英 郭巧 徐力 《Journal of Beijing Institute of Technology》 EI CAS 2006年第1期48-52,共5页
Aimed at the problems of premature and lower convergence of simple genetic algorithms (SGA), three ideas --partition the whole search uniformly, multi-genetic operators and multi-populations evolving independently a... Aimed at the problems of premature and lower convergence of simple genetic algorithms (SGA), three ideas --partition the whole search uniformly, multi-genetic operators and multi-populations evolving independently are introduced, and a grid-based pseudo-parallel genetic algorithms (GPPGA) is put forward. Thereafter, the analysis of premature and convergence of GPPGA is made. In the end, GPPGA is tested by both six-peak camel back function, Rosenbrock function and BP network. The result shows the feasibility and effectiveness of GPPGA in overcoming premature and improving convergence speed and accuracy. 展开更多
关键词 genetic algorithms parallel GRID neural network weights optimizing
下载PDF
A novel hybrid estimation of distribution algorithm for solving hybrid flowshop scheduling problem with unrelated parallel machine 被引量:9
16
作者 孙泽文 顾幸生 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1779-1788,共10页
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor... The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms. 展开更多
关键词 hybrid estimation of distribution algorithm teaching learning based optimization strategy hybrid flow shop unrelated parallel machine scheduling
下载PDF
Improved Hungarian algorithm for assignment problems of serial-parallel systems 被引量:5
17
作者 Tingpeng Li Yue Li Yanling Qian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第4期858-870,共13页
In order to overcome the shortcoming of the classical Hungarian algorithm that it can only solve the problems where the total cost is the sum of that of each job, an improved Hungarian algorithm is proposed and used t... In order to overcome the shortcoming of the classical Hungarian algorithm that it can only solve the problems where the total cost is the sum of that of each job, an improved Hungarian algorithm is proposed and used to solve the assignment problem of serial-parallel systems. First of all, by replacing parallel jobs with virtual jobs, the proposed algorithm converts the serial-parallel system into a pure serial system, where the classical Hungarian algorithm can be used to generate a temporal assignment plan via optimization. Afterwards, the assignment plan is validated by checking whether the virtual jobs can be realized by real jobs through local searching. If the assignment plan is not valid, the converted system will be adapted by adjusting the parameters of virtual jobs, and then be optimized again. Through iterative searching, the valid optimal assignment plan can eventually be obtained.To evaluate the proposed algorithm, the valid optimal assignment plan is applied to labor allocation of a manufacturing system which is a typical serial-parallel system. 展开更多
关键词 Hungarian algorithm assignment problem virtual job serial-parallel system optimization
下载PDF
Design of efficient parallel algorithms on shared memory multiprocessors
18
作者 Qiao Xiangzhen (Institute of Computing Technology, Chinese Academg of Science Beijing 100080, P. R. China) 《Wuhan University Journal of Natural Sciences》 CAS 1996年第Z1期344-349,共6页
The design of parallel algorithms is studied in this paper. These algorithms are applicable to shared memory MIMD machines In this paper, the emphasis is put on the methods for design of the efficient parallel algori... The design of parallel algorithms is studied in this paper. These algorithms are applicable to shared memory MIMD machines In this paper, the emphasis is put on the methods for design of the efficient parallel algorithms. The design of efficient parallel algorithms should be based on the following considerationst algorithm parallelism and the hardware-parallelism; granularity of the parallel algorithm, algorithm optimization according to the underling parallel machine. In this paper , these principles are applied to solve a model problem of the PDE. The speedup of the new method is high. The results were tested and evaluated on a shared memory MIMD machine. The practical results were agree with the predicted performance. 展开更多
关键词 parallel algorithm shared memory multiprocessor parallel granularity optimization.
下载PDF
Parallel Minimax Searching Algorithm for Extremum of Unimodal Unbounded Function
19
作者 Boris S. Verkhovsky 《International Journal of Communications, Network and System Sciences》 2011年第9期549-561,共13页
In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting.... In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting. Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals. Dynamic programming equations, combined with a series of liner programming problems, describe relations between results for every pair of successive evaluations of function f in parallel. Properties of optimal search strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer is located on a priori unknown interval (n-1], then it can be detected after cp(n)=「2log「p/2」+1(n+1)」-1 parallel evaluations of f(x), where p is the number of processors. 展开更多
关键词 Adversarial MINIMAX Analysis DESIGN Parameters Dynamic Programming FUNCTION Evaluation optimal algorithm parallel algorithm System DESIGN Statistical Experiments Time Complexity Unbounded Search UNIMODAL FUNCTION
下载PDF
Hybrid Support Vector Regression with Parallel Co-Evolution Algorithm Based on GA and PSO for Forecasting Monthly Rainfall
20
作者 Jiansheng Wu Yongsheng Xie 《Journal of Software Engineering and Applications》 2019年第12期524-539,共16页
Accurate and timely monthly rainfall forecasting is a major challenge for the scientific community in hydrological research such as river management project and design of flood warning systems. Support Vector Regressi... Accurate and timely monthly rainfall forecasting is a major challenge for the scientific community in hydrological research such as river management project and design of flood warning systems. Support Vector Regression (SVR) is a very useful precipitation prediction model. In this paper, a novel parallel co-evolution algorithm is presented to determine the appropriate parameters of the SVR in rainfall prediction based on parallel co-evolution by hybrid Genetic Algorithm and Particle Swarm Optimization algorithm, namely SVRGAPSO, for monthly rainfall prediction. The framework of the parallel co-evolutionary algorithm is to iterate two GA and PSO populations simultaneously, which is a mechanism for information exchange between GA and PSO populations to overcome premature local optimum. Our methodology adopts a hybrid PSO and GA for the optimal parameters of SVR by parallel co-evolving. The proposed technique is applied over rainfall forecasting to test its generalization capability as well as to make comparative evaluations with the several competing techniques, such as the other alternative methods, namely SVRPSO (SVR with PSO), SVRGA (SVR with GA), and SVR model. The empirical results indicate that the SVRGAPSO results have a superior generalization capability with the lowest prediction error values in rainfall forecasting. The SVRGAPSO can significantly improve the rainfall forecasting accuracy. Therefore, the SVRGAPSO model is a promising alternative for rainfall forecasting. 展开更多
关键词 Genetic algorithm Particle Swarm optimization RAINFALL Forecasting parallel CO-EVOLUTION
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部