This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled workers.A mathematical model for the parallel disassembly line is established to achieve maximized disassemb...This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled workers.A mathematical model for the parallel disassembly line is established to achieve maximized disassembly profit and minimized workstation cycle time.Based on a product’s AND/OR graph,matrices for task-skill,worker-skill,precedence relationships,and disassembly correlations are developed.A multi-objective discrete chemical reaction optimization algorithm is designed.To enhance solution diversity,improvements are made to four reactions:decomposition,synthesis,intermolecular ineffective collision,and wall invalid collision reaction,completing the evolution of molecular individuals.The established model and improved algorithm are applied to ball pen,flashlight,washing machine,and radio combinations,respectively.Introducing a Collaborative Resource Allocation(CRA)strategy based on a Decomposition-Based Multi-Objective Evolutionary Algorithm,the experimental results are compared with four classical algorithms:MOEA/D,MOEAD-CRA,Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA-Ⅱ),and Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ).This validates the feasibility and superiority of the proposed algorithm in parallel disassembly production lines.展开更多
Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitati...Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.展开更多
In this paper, a parallel Surface Extraction from Binary Volumes with Higher-Order Smoothness (SEBVHOS) algorithm is proposed to accelerate the SEBVHOS execution. The original SEBVHOS algorithm is parallelized first, ...In this paper, a parallel Surface Extraction from Binary Volumes with Higher-Order Smoothness (SEBVHOS) algorithm is proposed to accelerate the SEBVHOS execution. The original SEBVHOS algorithm is parallelized first, and then several performance optimization techniques which are loop optimization, cache optimization, false sharing optimization, synchronization overhead op-timization, and thread affinity optimization, are used to improve the implementation's performance on multi-core systems. The performance of the parallel SEBVHOS algorithm is analyzed on a dual-core system. The experimental results show that the parallel SEBVHOS algorithm achieves an average of 1.86x speedup. More importantly, our method does not come with additional aliasing artifacts, com-paring to the original SEBVHOS algorithm.展开更多
Considering premature convergence in the searching process of genetic algorithm, a chaotic migration-based pseudo parallel genetic algorithm (CMPPGA) is proposed, which applies the idea of isolated evolution and infor...Considering premature convergence in the searching process of genetic algorithm, a chaotic migration-based pseudo parallel genetic algorithm (CMPPGA) is proposed, which applies the idea of isolated evolution and information exchanging in distributed Parallel Genetic Algorithm by serial program structure to solve optimization problem of low real-time demand. In this algorithm, asynchronic migration of individuals during parallel evolution is guided by a chaotic migration sequence. Information exchanging among sub-populations is ensured to be efficient and sufficient due to that the sequence is ergodic and stochastic. Simulation study of CMPPGA shows its strong global search ability, superiority to standard genetic algorithm and high immunity against premature convergence. According to the practice of raw material supply, an inventory programming model is set up and solved by CMPPGA with satisfactory results returned.展开更多
As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optim...As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time.展开更多
Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been...Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles.展开更多
A new genetic algorithm named niche pseudo-parallel genetic algorithm (NPPGA) is presented for path evolution and genetic optimization of autonomous mobile robot. The NPPGA is an effective improvement to maintain th...A new genetic algorithm named niche pseudo-parallel genetic algorithm (NPPGA) is presented for path evolution and genetic optimization of autonomous mobile robot. The NPPGA is an effective improvement to maintain the population diversity as well for the sake of avoiding premature and strengthen parallelism of the population to accelerate the search process combined with niche genetic algorithms and pseudo-parallel genetic algorithms. The proposed approach is evaluated by robotic path optimization, which is a specific application of traveler salesman problem (TSP). Experimental results indicated that a shortest path could be obtained in the practical traveling salesman problem named "Robot tour around Pekin", and the performance conducted by NPPGA is better than simple genetic algorithm (SGA) and distributed paralell genetic algorithms (DPGA).展开更多
Recently Guo Tao proposed a stochastic search algorithm in his PhD thesis for solving function optimization problems. He combined the subspace search method (a general multi-parent recombination strategy) with the pop...Recently Guo Tao proposed a stochastic search algorithm in his PhD thesis for solving function optimization problems. He combined the subspace search method (a general multi-parent recombination strategy) with the population hill-climbing method. The former keeps a global search for overall situation, and the latter keeps the convergence of the algorithm. Guo's algorithm has many advantages, such as the simplicity of its structure, the higher accuracy of its results, the wide range of its applications, and the robustness of its use. In this paper a preliminary theoretical analysis of the algorithm is given and some numerical experiments has been done by using Guo's algorithm for demonstrating the theoretical results. Three asynchronous parallel evolutionary algorithms with different granularities for MIMD machines are designed by parallelizing Guo's Algorithm.展开更多
For the narrow workspace problem of the universal-prismatic-universal(UPU)parallel robotwith fixed orientation,a kind of multi-objective genetic algorithm is studied to optimize the robot’sworkspace.The concept of th...For the narrow workspace problem of the universal-prismatic-universal(UPU)parallel robotwith fixed orientation,a kind of multi-objective genetic algorithm is studied to optimize the robot’sworkspace.The concept of the effective workspace and its solution method are given.The effectiveworkspace height(EWH)and global condition number index(GCI)of Jacobi matrix are selected asthe optimized objective functions.Setting the robot in two different orientations,the geometric pa-rameters are optimized by the multi-objective genetic algorithm named non-dominated sorting geneticalgorithm II(NSGA-II),and a set of structural parameters is obtained.The optimization results areverified by four indicators with the robot’s moving platform at different orientations.The resultsshow that,after optimization,the fixed-orientation workspace volume,the effective workspace heightand the effective workspace volume increase by 32.4%,17.8%and 72.9%on average,respec-tively.GCI decreases by 6.8%on average.展开更多
A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the s...A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement.展开更多
A contour-parallel offset (CPO) tool-path linking algorithm is derived without toolretractions and with the largest practicability. The concept of "tool-path loop tree" (TPL-tree) providing the information on th...A contour-parallel offset (CPO) tool-path linking algorithm is derived without toolretractions and with the largest practicability. The concept of "tool-path loop tree" (TPL-tree) providing the information on the parent/child relationships among the tool-path loops (TPLs) is presented. The direction, tool-path loop, leaf/branch, layer number, and the corresponding points of the TPL-tree are introduced. By defining TPL as a vector, and by traveling throughout the tree, a CPO tool-path without tool-retractions can be derived.展开更多
A two-level optimization method for the design of complex truss and parallel distributed implementation on a LAN is presented using parallel virtual machine (PVM) for Win 32 as message passing between PCs. The volu...A two-level optimization method for the design of complex truss and parallel distributed implementation on a LAN is presented using parallel virtual machine (PVM) for Win 32 as message passing between PCs. The volumes of truss are minimized by decomposing the original optimization problem into a number of bar optimization problems executed concurrently and a coordinate optimization problem, subject to constraints on nodal displacements, and stresses, buckling and crippling of bars, etc. The system sensitivity analysis that derives the partial derivatives of displacements and stresses with respect to areas are also performed in parallel so as to shorten the analysis time. The convergence and the speedup performances as well as parallel computing efficiency of the method are investigated by the optimization examples of a 52-bar planar truss and a 3 126-bar three-dimensional truss. The results show that the ideal speedup is obtained in the cases of 2 PCs for the 3 126-bar space truss optimization, while no speedup is observed for the 52-bar truss. It!is concluded that (1) the parallel distributed algorithm proposed is efficient on the PC-based LAN for the coarse-grained large optimization problem; (2) to get a high speedup, the problem granularity should match with the network granularity; and (3) the larger the problem size is, the higher the parallel efficiency is.展开更多
An efficient parallel global router using random optimization that is independent of net ordering is proposed.Parallel approaches are described and strategies guaranteeing the routing quality are discussed.The wire le...An efficient parallel global router using random optimization that is independent of net ordering is proposed.Parallel approaches are described and strategies guaranteeing the routing quality are discussed.The wire length model is implemented on multiprocessor,which enables the algorithm to approach feasibility of large scale problems.Timing driven model on multiprocessor and wire length model on distributed processors are also presented.The parallel algorithm greatly reduces the run time of routing.The experimental results show good speedups with no degradation of the routing quality.展开更多
Aimed at the problems of premature and lower convergence of simple genetic algorithms (SGA), three ideas --partition the whole search uniformly, multi-genetic operators and multi-populations evolving independently a...Aimed at the problems of premature and lower convergence of simple genetic algorithms (SGA), three ideas --partition the whole search uniformly, multi-genetic operators and multi-populations evolving independently are introduced, and a grid-based pseudo-parallel genetic algorithms (GPPGA) is put forward. Thereafter, the analysis of premature and convergence of GPPGA is made. In the end, GPPGA is tested by both six-peak camel back function, Rosenbrock function and BP network. The result shows the feasibility and effectiveness of GPPGA in overcoming premature and improving convergence speed and accuracy.展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
In order to overcome the shortcoming of the classical Hungarian algorithm that it can only solve the problems where the total cost is the sum of that of each job, an improved Hungarian algorithm is proposed and used t...In order to overcome the shortcoming of the classical Hungarian algorithm that it can only solve the problems where the total cost is the sum of that of each job, an improved Hungarian algorithm is proposed and used to solve the assignment problem of serial-parallel systems. First of all, by replacing parallel jobs with virtual jobs, the proposed algorithm converts the serial-parallel system into a pure serial system, where the classical Hungarian algorithm can be used to generate a temporal assignment plan via optimization. Afterwards, the assignment plan is validated by checking whether the virtual jobs can be realized by real jobs through local searching. If the assignment plan is not valid, the converted system will be adapted by adjusting the parameters of virtual jobs, and then be optimized again. Through iterative searching, the valid optimal assignment plan can eventually be obtained.To evaluate the proposed algorithm, the valid optimal assignment plan is applied to labor allocation of a manufacturing system which is a typical serial-parallel system.展开更多
The design of parallel algorithms is studied in this paper. These algorithms are applicable to shared memory MIMD machines In this paper, the emphasis is put on the methods for design of the efficient parallel algori...The design of parallel algorithms is studied in this paper. These algorithms are applicable to shared memory MIMD machines In this paper, the emphasis is put on the methods for design of the efficient parallel algorithms. The design of efficient parallel algorithms should be based on the following considerationst algorithm parallelism and the hardware-parallelism; granularity of the parallel algorithm, algorithm optimization according to the underling parallel machine. In this paper , these principles are applied to solve a model problem of the PDE. The speedup of the new method is high. The results were tested and evaluated on a shared memory MIMD machine. The practical results were agree with the predicted performance.展开更多
In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting....In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting. Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals. Dynamic programming equations, combined with a series of liner programming problems, describe relations between results for every pair of successive evaluations of function f in parallel. Properties of optimal search strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer is located on a priori unknown interval (n-1], then it can be detected after cp(n)=「2log「p/2」+1(n+1)」-1 parallel evaluations of f(x), where p is the number of processors.展开更多
Accurate and timely monthly rainfall forecasting is a major challenge for the scientific community in hydrological research such as river management project and design of flood warning systems. Support Vector Regressi...Accurate and timely monthly rainfall forecasting is a major challenge for the scientific community in hydrological research such as river management project and design of flood warning systems. Support Vector Regression (SVR) is a very useful precipitation prediction model. In this paper, a novel parallel co-evolution algorithm is presented to determine the appropriate parameters of the SVR in rainfall prediction based on parallel co-evolution by hybrid Genetic Algorithm and Particle Swarm Optimization algorithm, namely SVRGAPSO, for monthly rainfall prediction. The framework of the parallel co-evolutionary algorithm is to iterate two GA and PSO populations simultaneously, which is a mechanism for information exchange between GA and PSO populations to overcome premature local optimum. Our methodology adopts a hybrid PSO and GA for the optimal parameters of SVR by parallel co-evolving. The proposed technique is applied over rainfall forecasting to test its generalization capability as well as to make comparative evaluations with the several competing techniques, such as the other alternative methods, namely SVRPSO (SVR with PSO), SVRGA (SVR with GA), and SVR model. The empirical results indicate that the SVRGAPSO results have a superior generalization capability with the lowest prediction error values in rainfall forecasting. The SVRGAPSO can significantly improve the rainfall forecasting accuracy. Therefore, the SVRGAPSO model is a promising alternative for rainfall forecasting.展开更多
文摘This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled workers.A mathematical model for the parallel disassembly line is established to achieve maximized disassembly profit and minimized workstation cycle time.Based on a product’s AND/OR graph,matrices for task-skill,worker-skill,precedence relationships,and disassembly correlations are developed.A multi-objective discrete chemical reaction optimization algorithm is designed.To enhance solution diversity,improvements are made to four reactions:decomposition,synthesis,intermolecular ineffective collision,and wall invalid collision reaction,completing the evolution of molecular individuals.The established model and improved algorithm are applied to ball pen,flashlight,washing machine,and radio combinations,respectively.Introducing a Collaborative Resource Allocation(CRA)strategy based on a Decomposition-Based Multi-Objective Evolutionary Algorithm,the experimental results are compared with four classical algorithms:MOEA/D,MOEAD-CRA,Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA-Ⅱ),and Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ).This validates the feasibility and superiority of the proposed algorithm in parallel disassembly production lines.
基金Supported by National Natural Science Foundation of China(Grant No.51175029)Beijing Municipal Natural Science Foundation of China(Grant No.3132019)
文摘Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.
基金Supported by the National Natural Science Foundation of China(No.61071173)
文摘In this paper, a parallel Surface Extraction from Binary Volumes with Higher-Order Smoothness (SEBVHOS) algorithm is proposed to accelerate the SEBVHOS execution. The original SEBVHOS algorithm is parallelized first, and then several performance optimization techniques which are loop optimization, cache optimization, false sharing optimization, synchronization overhead op-timization, and thread affinity optimization, are used to improve the implementation's performance on multi-core systems. The performance of the parallel SEBVHOS algorithm is analyzed on a dual-core system. The experimental results show that the parallel SEBVHOS algorithm achieves an average of 1.86x speedup. More importantly, our method does not come with additional aliasing artifacts, com-paring to the original SEBVHOS algorithm.
文摘Considering premature convergence in the searching process of genetic algorithm, a chaotic migration-based pseudo parallel genetic algorithm (CMPPGA) is proposed, which applies the idea of isolated evolution and information exchanging in distributed Parallel Genetic Algorithm by serial program structure to solve optimization problem of low real-time demand. In this algorithm, asynchronic migration of individuals during parallel evolution is guided by a chaotic migration sequence. Information exchanging among sub-populations is ensured to be efficient and sufficient due to that the sequence is ergodic and stochastic. Simulation study of CMPPGA shows its strong global search ability, superiority to standard genetic algorithm and high immunity against premature convergence. According to the practice of raw material supply, an inventory programming model is set up and solved by CMPPGA with satisfactory results returned.
基金supported by the National Natural Science Foundation of China(61771293)the Key Project of Shangdong Province(2019JZZY010111)。
文摘As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA11A127)
文摘Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles.
文摘A new genetic algorithm named niche pseudo-parallel genetic algorithm (NPPGA) is presented for path evolution and genetic optimization of autonomous mobile robot. The NPPGA is an effective improvement to maintain the population diversity as well for the sake of avoiding premature and strengthen parallelism of the population to accelerate the search process combined with niche genetic algorithms and pseudo-parallel genetic algorithms. The proposed approach is evaluated by robotic path optimization, which is a specific application of traveler salesman problem (TSP). Experimental results indicated that a shortest path could be obtained in the practical traveling salesman problem named "Robot tour around Pekin", and the performance conducted by NPPGA is better than simple genetic algorithm (SGA) and distributed paralell genetic algorithms (DPGA).
基金Supported by the Natonal Natural Science Foundation of China (No. 70071042 60073043)the National 863 Hi-Tech Project of Chi
文摘Recently Guo Tao proposed a stochastic search algorithm in his PhD thesis for solving function optimization problems. He combined the subspace search method (a general multi-parent recombination strategy) with the population hill-climbing method. The former keeps a global search for overall situation, and the latter keeps the convergence of the algorithm. Guo's algorithm has many advantages, such as the simplicity of its structure, the higher accuracy of its results, the wide range of its applications, and the robustness of its use. In this paper a preliminary theoretical analysis of the algorithm is given and some numerical experiments has been done by using Guo's algorithm for demonstrating the theoretical results. Three asynchronous parallel evolutionary algorithms with different granularities for MIMD machines are designed by parallelizing Guo's Algorithm.
基金Supported by the National Key R&D Program of China(No.2020YFB1313803)。
文摘For the narrow workspace problem of the universal-prismatic-universal(UPU)parallel robotwith fixed orientation,a kind of multi-objective genetic algorithm is studied to optimize the robot’sworkspace.The concept of the effective workspace and its solution method are given.The effectiveworkspace height(EWH)and global condition number index(GCI)of Jacobi matrix are selected asthe optimized objective functions.Setting the robot in two different orientations,the geometric pa-rameters are optimized by the multi-objective genetic algorithm named non-dominated sorting geneticalgorithm II(NSGA-II),and a set of structural parameters is obtained.The optimization results areverified by four indicators with the robot’s moving platform at different orientations.The resultsshow that,after optimization,the fixed-orientation workspace volume,the effective workspace heightand the effective workspace volume increase by 32.4%,17.8%and 72.9%on average,respec-tively.GCI decreases by 6.8%on average.
文摘A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement.
文摘A contour-parallel offset (CPO) tool-path linking algorithm is derived without toolretractions and with the largest practicability. The concept of "tool-path loop tree" (TPL-tree) providing the information on the parent/child relationships among the tool-path loops (TPLs) is presented. The direction, tool-path loop, leaf/branch, layer number, and the corresponding points of the TPL-tree are introduced. By defining TPL as a vector, and by traveling throughout the tree, a CPO tool-path without tool-retractions can be derived.
基金heNationalNaturalScienceFoundationofChina (No .5 96 6 5 0 0 2 )andtheScientificResearchFoundationofGuangxiUniversity (No .X0 32 0 32 )
文摘A two-level optimization method for the design of complex truss and parallel distributed implementation on a LAN is presented using parallel virtual machine (PVM) for Win 32 as message passing between PCs. The volumes of truss are minimized by decomposing the original optimization problem into a number of bar optimization problems executed concurrently and a coordinate optimization problem, subject to constraints on nodal displacements, and stresses, buckling and crippling of bars, etc. The system sensitivity analysis that derives the partial derivatives of displacements and stresses with respect to areas are also performed in parallel so as to shorten the analysis time. The convergence and the speedup performances as well as parallel computing efficiency of the method are investigated by the optimization examples of a 52-bar planar truss and a 3 126-bar three-dimensional truss. The results show that the ideal speedup is obtained in the cases of 2 PCs for the 3 126-bar space truss optimization, while no speedup is observed for the 52-bar truss. It!is concluded that (1) the parallel distributed algorithm proposed is efficient on the PC-based LAN for the coarse-grained large optimization problem; (2) to get a high speedup, the problem granularity should match with the network granularity; and (3) the larger the problem size is, the higher the parallel efficiency is.
文摘An efficient parallel global router using random optimization that is independent of net ordering is proposed.Parallel approaches are described and strategies guaranteeing the routing quality are discussed.The wire length model is implemented on multiprocessor,which enables the algorithm to approach feasibility of large scale problems.Timing driven model on multiprocessor and wire length model on distributed processors are also presented.The parallel algorithm greatly reduces the run time of routing.The experimental results show good speedups with no degradation of the routing quality.
文摘Aimed at the problems of premature and lower convergence of simple genetic algorithms (SGA), three ideas --partition the whole search uniformly, multi-genetic operators and multi-populations evolving independently are introduced, and a grid-based pseudo-parallel genetic algorithms (GPPGA) is put forward. Thereafter, the analysis of premature and convergence of GPPGA is made. In the end, GPPGA is tested by both six-peak camel back function, Rosenbrock function and BP network. The result shows the feasibility and effectiveness of GPPGA in overcoming premature and improving convergence speed and accuracy.
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
文摘In order to overcome the shortcoming of the classical Hungarian algorithm that it can only solve the problems where the total cost is the sum of that of each job, an improved Hungarian algorithm is proposed and used to solve the assignment problem of serial-parallel systems. First of all, by replacing parallel jobs with virtual jobs, the proposed algorithm converts the serial-parallel system into a pure serial system, where the classical Hungarian algorithm can be used to generate a temporal assignment plan via optimization. Afterwards, the assignment plan is validated by checking whether the virtual jobs can be realized by real jobs through local searching. If the assignment plan is not valid, the converted system will be adapted by adjusting the parameters of virtual jobs, and then be optimized again. Through iterative searching, the valid optimal assignment plan can eventually be obtained.To evaluate the proposed algorithm, the valid optimal assignment plan is applied to labor allocation of a manufacturing system which is a typical serial-parallel system.
文摘The design of parallel algorithms is studied in this paper. These algorithms are applicable to shared memory MIMD machines In this paper, the emphasis is put on the methods for design of the efficient parallel algorithms. The design of efficient parallel algorithms should be based on the following considerationst algorithm parallelism and the hardware-parallelism; granularity of the parallel algorithm, algorithm optimization according to the underling parallel machine. In this paper , these principles are applied to solve a model problem of the PDE. The speedup of the new method is high. The results were tested and evaluated on a shared memory MIMD machine. The practical results were agree with the predicted performance.
文摘In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting. Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals. Dynamic programming equations, combined with a series of liner programming problems, describe relations between results for every pair of successive evaluations of function f in parallel. Properties of optimal search strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer is located on a priori unknown interval (n-1], then it can be detected after cp(n)=「2log「p/2」+1(n+1)」-1 parallel evaluations of f(x), where p is the number of processors.
文摘Accurate and timely monthly rainfall forecasting is a major challenge for the scientific community in hydrological research such as river management project and design of flood warning systems. Support Vector Regression (SVR) is a very useful precipitation prediction model. In this paper, a novel parallel co-evolution algorithm is presented to determine the appropriate parameters of the SVR in rainfall prediction based on parallel co-evolution by hybrid Genetic Algorithm and Particle Swarm Optimization algorithm, namely SVRGAPSO, for monthly rainfall prediction. The framework of the parallel co-evolutionary algorithm is to iterate two GA and PSO populations simultaneously, which is a mechanism for information exchange between GA and PSO populations to overcome premature local optimum. Our methodology adopts a hybrid PSO and GA for the optimal parameters of SVR by parallel co-evolving. The proposed technique is applied over rainfall forecasting to test its generalization capability as well as to make comparative evaluations with the several competing techniques, such as the other alternative methods, namely SVRPSO (SVR with PSO), SVRGA (SVR with GA), and SVR model. The empirical results indicate that the SVRGAPSO results have a superior generalization capability with the lowest prediction error values in rainfall forecasting. The SVRGAPSO can significantly improve the rainfall forecasting accuracy. Therefore, the SVRGAPSO model is a promising alternative for rainfall forecasting.