期刊文献+
共找到2,203篇文章
< 1 2 111 >
每页显示 20 50 100
Enhanced Parallelized DNA-Coded Stream Cipher Based on Multiplayer Prisoners’Dilemma
1
作者 Khaled M.Suwais 《Computers, Materials & Continua》 SCIE EI 2023年第5期2685-2704,共20页
Data encryption is essential in securing exchanged data between connected parties.Encryption is the process of transforming readable text into scrambled,unreadable text using secure keys.Stream ciphers are one type of... Data encryption is essential in securing exchanged data between connected parties.Encryption is the process of transforming readable text into scrambled,unreadable text using secure keys.Stream ciphers are one type of an encryption algorithm that relies on only one key for decryption and as well as encryption.Many existing encryption algorithms are developed based on either a mathematical foundation or on other biological,social or physical behaviours.One technique is to utilise the behavioural aspects of game theory in a stream cipher.In this paper,we introduce an enhanced Deoxyribonucleic acid(DNA)-coded stream cipher based on an iterated n-player prisoner’s dilemma paradigm.Our main goal is to contribute to adding more layers of randomness to the behaviour of the keystream generation process;these layers are inspired by the behaviour of multiple players playing a prisoner’s dilemma game.We implement parallelism to compensate for the additional processing time that may result fromadding these extra layers of randomness.The results show that our enhanced design passes the statistical tests and achieves an encryption throughput of about 1,877 Mbit/s,which makes it a feasible secure stream cipher. 展开更多
关键词 ENCRYPTION game theory DNA cryptography stream cipher parallel computing
下载PDF
PARALLELIZED UPWIND FLUX SPLITTING SCHEME FOR SUPERSONIC REACTING FLOWS ON UNSTRUCTURED HYBRID MESHES
2
作者 王江峰 伍贻兆 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第3期218-224,共7页
A parallelized upwind flux splitting scheme for supersonic reacting flows on hybrid meshes is presented. The complexity of super/hyper-sonic combustion flows makes it necessary to establish solvers with higher resolut... A parallelized upwind flux splitting scheme for supersonic reacting flows on hybrid meshes is presented. The complexity of super/hyper-sonic combustion flows makes it necessary to establish solvers with higher resolution and efficiency for multi-component Euler/N-S equations. Hence, a spatial second-order van Leer type flux vector splitting scheme is established by introducing auxiliary points in interpolation, and a domain decomposition method used on unstructured hybrid meshes for obtaining high calculating efficiency. The numerical scheme with five-stage Runge-Kutta time step method is implemented to the simulation of combustion flows, including the supersonic hydrogen/air combustion and the normal injection of hydrogen into reacting flows. Satisfying results are obtained compared with limited references. 展开更多
关键词 supersonic combustion chemical reaction upwind scheme PARALLELIZATION
下载PDF
Parallelized Implementation of the Finite Particle Method for Explicit Dynamics in GPU 被引量:6
3
作者 Jingzhe Tang Yanfeng Zheng +2 位作者 Chao Yang Wei Wang Yaozhi Luo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第1期5-31,共27页
As a novel kind of particle method for explicit dynamics,the finite particle method(FPM)does not require the formation or solution of global matrices,and the evaluations of the element equivalent forces and particle d... As a novel kind of particle method for explicit dynamics,the finite particle method(FPM)does not require the formation or solution of global matrices,and the evaluations of the element equivalent forces and particle displacements are decoupled in nature,thus making this method suitable for parallelization.The FPM also requires an acceleration strategy to overcome the heavy computational burden of its explicit framework for time-dependent dynamic analysis.To this end,a GPU-accelerated parallel strategy for the FPM is proposed in this paper.By taking advantage of the independence of each step of the FPM workflow,a generic parallelized computational framework for multiple types of analysis is established.Using the Compute Unified Device Architecture(CUDA),the GPU implementations of the main tasks of the FPM,such as evaluating and assembling the element equivalent forces and solving the kinematic equations for particles,are elaborated through careful thread management and memory optimization.Performance tests show that speedup ratios of 8,25 and 48 are achieved for beams,hexahedral solids and triangular shells,respectively.For examples consisting of explicit dynamic analyses of shells and solids,comparisons with Abaqus using 1 to 8 CPU cores validate the accuracy of the results and demonstrate a maximum speed improvement of a factor of 11.2. 展开更多
关键词 Finite particle method GPU parallel computing explicit dynamics
下载PDF
改进注意力机制嵌入PR-Net模型的水稻病害识别仿真
4
作者 路阳 刘鹏飞 +3 位作者 许思源 刘启旺 顾福谦 王鹏 《系统仿真学报》 CAS CSCD 北大核心 2024年第6期1322-1333,共12页
针对现有的CNN模型在水稻叶部病害的识别中准确率较低的问题,提出了一种结合并行结构和残差结构的混合卷积神经网络模型PRC-Net(parallel residual with coordinate attention network)。引入并行结构,提高卷积的感受野;结合残差结构,... 针对现有的CNN模型在水稻叶部病害的识别中准确率较低的问题,提出了一种结合并行结构和残差结构的混合卷积神经网络模型PRC-Net(parallel residual with coordinate attention network)。引入并行结构,提高卷积的感受野;结合残差结构,使特征信息完整的连续传递;在骨干模型PR-Net中嵌入改进的空间注意力机制,增强对不同尺度病斑特征信息的凝聚程度;为进一步提升病害识别的准确率,并减少模型的训练时间和推理时间,通过改变加权方式对模型结构进行优化。仿真结果表明:与InceptionResNetV2等分类模型相比,PRC-Net具有更少的训练参数、更短的训练时间和更高的识别精度,性能优于其他作物病害识别模型。 展开更多
关键词 水稻叶部病害 PRC-Net(parallel residual with coordinate attention network) 卷积神经网络 注意力机制 图像识别
下载PDF
An MPI parallel DEM-IMB-LBM framework for simulating fluid-solid interaction problems 被引量:2
5
作者 Ming Xia Liuhong Deng +3 位作者 Fengqiang Gong Tongming Qu Y.T.Feng Jin Yu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2219-2231,共13页
The high-resolution DEM-IMB-LBM model can accurately describe pore-scale fluid-solid interactions,but its potential for use in geotechnical engineering analysis has not been fully unleashed due to its prohibitive comp... The high-resolution DEM-IMB-LBM model can accurately describe pore-scale fluid-solid interactions,but its potential for use in geotechnical engineering analysis has not been fully unleashed due to its prohibitive computational costs.To overcome this limitation,a message passing interface(MPI)parallel DEM-IMB-LBM framework is proposed aimed at enhancing computation efficiency.This framework utilises a static domain decomposition scheme,with the entire computation domain being decomposed into multiple subdomains according to predefined processors.A detailed parallel strategy is employed for both contact detection and hydrodynamic force calculation.In particular,a particle ID re-numbering scheme is proposed to handle particle transitions across sub-domain interfaces.Two benchmarks are conducted to validate the accuracy and overall performance of the proposed framework.Subsequently,the framework is applied to simulate scenarios involving multi-particle sedimentation and submarine landslides.The numerical examples effectively demonstrate the robustness and applicability of the MPI parallel DEM-IMB-LBM framework. 展开更多
关键词 Discrete element method(DEM) Lattice Boltzmann method(LBM) Immersed moving boundary(IMB) Multi-cores parallelization Message passing interface(MPI) CPU Submarine landslides
下载PDF
Hadoop-based secure storage solution for big data in cloud computing environment 被引量:1
6
作者 Shaopeng Guan Conghui Zhang +1 位作者 Yilin Wang Wenqing Liu 《Digital Communications and Networks》 SCIE CSCD 2024年第1期227-236,共10页
In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose... In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose a Hadoop based big data secure storage scheme.Firstly,in order to disperse the NameNode service from a single server to multiple servers,we combine HDFS federation and HDFS high-availability mechanisms,and use the Zookeeper distributed coordination mechanism to coordinate each node to achieve dual-channel storage.Then,we improve the ECC encryption algorithm for the encryption of ordinary data,and adopt a homomorphic encryption algorithm to encrypt data that needs to be calculated.To accelerate the encryption,we adopt the dualthread encryption mode.Finally,the HDFS control module is designed to combine the encryption algorithm with the storage model.Experimental results show that the proposed solution solves the problem of a single point of failure of metadata,performs well in terms of metadata reliability,and can realize the fault tolerance of the server.The improved encryption algorithm integrates the dual-channel storage mode,and the encryption storage efficiency improves by 27.6% on average. 展开更多
关键词 Big data security Data encryption HADOOP Parallel encrypted storage Zookeeper
下载PDF
Evolutionary Neural Architecture Search and Its Applications in Healthcare 被引量:1
7
作者 Xin Liu Jie Li +3 位作者 Jianwei Zhao Bin Cao Rongge Yan Zhihan Lyu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期143-185,共43页
Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human ... Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications. 展开更多
关键词 Neural architecture search evolutionary computation large-scale multiobjective optimization distributed parallelism healthcare
下载PDF
Volumetric lattice Boltzmann method for pore-scale mass diffusionadvection process in geopolymer porous structures 被引量:1
8
作者 Xiaoyu Zhang Zirui Mao +6 位作者 Floyd W.Hilty Yulan Li Agnes Grandjean Robert Montgomery Hans-Conrad zur Loye Huidan Yu Shenyang Hu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2126-2136,共11页
Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti... Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications. 展开更多
关键词 Volumetric lattice Boltzmann method(VLBM) Phase field method(PFM) Pore-scale diffusion-advection Nuclear waste treatment Porous media flow Graphics processing unit(GPU) parallelization
下载PDF
Type Synthesis of Self-Alignment Parallel Ankle Rehabilitation Robot with Suitable Passive Degrees of Freedom
9
作者 Ya Liu Wenjuan Lu +3 位作者 Dabao Fan Weijian Tan Bo Hu Daxing Zeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期160-175,共16页
The current parallel ankle rehabilitation robot(ARR)suffers from the problem of difficult real-time alignment of the human-robot joint center of rotation,which may lead to secondary injuries to the patient.This study ... The current parallel ankle rehabilitation robot(ARR)suffers from the problem of difficult real-time alignment of the human-robot joint center of rotation,which may lead to secondary injuries to the patient.This study investigates type synthesis of a parallel self-alignment ankle rehabilitation robot(PSAARR)based on the kinematic characteristics of ankle joint rotation center drift from the perspective of introducing"suitable passive degrees of freedom(DOF)"with a suitable number and form.First,the self-alignment principle of parallel ARR was proposed by deriving conditions for transforming a human-robot closed chain(HRCC)formed by an ARR and human body into a kinematic suitable constrained system and introducing conditions of"decoupled"and"less limb".Second,the relationship between the self-alignment principle and actuation wrenches(twists)of PSAARR was analyzed with the velocity Jacobian matrix as a"bridge".Subsequently,the type synthesis conditions of PSAARR were proposed.Third,a PSAARR synthesis method was proposed based on the screw theory and type of PSAARR synthesis conducted.Finally,an HRCC kinematic model was established to verify the self-alignment capability of the PSAARR.In this study,93 types of PSAARR limb structures were synthesized and the self-alignment capability of a human-robot joint axis was verified through kinematic analysis,which provides a theoretical basis for the design of such an ARR. 展开更多
关键词 Ankle rehabilitation robot SELF-ALIGNMENT Parallel mechanism Type synthesis Screw theory
下载PDF
An efficient parallel algorithm of variational nodal method for heterogeneous neutron transport problems
10
作者 Han Yin Xiao-Jing Liu Teng-Fei Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第4期29-45,共17页
The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-... The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-fidelity models has been challenging due to the prohibitive computational costs.This paper presents an efficient parallel algorithm tailored for HVNM based on the Message Passing Interface standard.The algorithm evenly distributes the response matrix sets among processors during the matrix formation process,thus enabling independent construction without communication.Once the formation tasks are completed,a collective operation merges and shares the matrix sets among the processors.For the solution process,the problem domain is decomposed into subdomains assigned to specific processors,and the red-black Gauss-Seidel iteration is employed within each subdomain to solve the response matrix equation.Point-to-point communication is conducted between adjacent subdomains to exchange data along the boundaries.The accuracy and efficiency of the parallel algorithm are verified using the KAIST and JRR-3 test cases.Numerical results obtained with multiple processors agree well with those obtained from Monte Carlo calculations.The parallelization of HVNM results in eigenvalue errors of 31 pcm/-90 pcm and fission rate RMS errors of 1.22%/0.66%,respectively,for the 3D KAIST problem and the 3D JRR-3 problem.In addition,the parallel algorithm significantly reduces computation time,with an efficiency of 68.51% using 36 processors in the KAIST problem and 77.14% using 144 processors in the JRR-3 problem. 展开更多
关键词 Neutron transport Variational nodal method PARALLELIZATION KAIST JRR-3
下载PDF
Evaluation on Configuration Stiffness of Overconstrained 2R1T Parallel Mechanisms
11
作者 Xuejian Ma Zhenghe Xu +3 位作者 Yundou Xu Yu Wang Jiantao Yao Yongsheng Zhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期62-82,共21页
Currently,two rotations and one translation(2R1T)three-degree-of-freedom(DOF)parallel mechanisms(PMs)are widely applied in five-DOF hybrid machining robots.However,there is a lack of an effective method to evaluate th... Currently,two rotations and one translation(2R1T)three-degree-of-freedom(DOF)parallel mechanisms(PMs)are widely applied in five-DOF hybrid machining robots.However,there is a lack of an effective method to evaluate the configuration stiffness of mechanisms during the mechanism design stage.It is a challenge to select appropriate 2R1T PMs with excellent stiffness performance during the design stage.Considering the operational status of 2R1T PMs,the bending and torsional stiffness are considered as indices to evaluate PMs'configuration stiffness.Subsequently,a specific method is proposed to calculate these stiffness indices.Initially,the various types of structural and driving stiffness for each branch are assessed and their specific values defined.Subsequently,a rigid-flexible coupled force model for the over-constrained 2R1T PM is established,and the proposed evaluation method is used to analyze the configuration stiffness of the five 2R1T PMs in the entire workspace.Finally,the driving force and constraint force of each branch in the whole working space are calculated to further elucidate the stiffness evaluating results by using the proposed method above.The obtained results demonstrate that the bending and torsional stiffness of the 2RPU/UPR/RPR mechanism along the x and y-directions are larger than the other four mechanisms. 展开更多
关键词 Parallel mechanism STIFFNESS Over-constrained Three degrees of freedom
下载PDF
Configuration and Kinematics of a 3-DOF Generalized Spherical Parallel Mechanism for Ankle Rehabilitation
12
作者 Jianjun Zhang Shuai Yang +2 位作者 Chenglei Liu Xiaohui Wang Shijie Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期176-188,共13页
The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the hum... The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the human ankle to the UR model and proposes a novel three degrees of freedom(3-DOF)generalized spherical parallel mechanism for ankle rehabilitation.The parallel mechanism has two spherical centers corresponding to the rotation centers of tibiotalar and subtalar joints.Using screw theory,the mobility of the parallel mechanism,which meets the requirements of the human ankle,is analyzed.The inverse kinematics are presented,and singularities are identified based on the Jacobian matrix.The workspaces of the parallel mechanism are obtained through the search method and compared with the motion range of the human ankle,which shows that the parallel mechanism can meet the motion demand of ankle rehabilitation.Additionally,based on the motion-force transmissibility,the performance atlases are plotted in the parameter optimal design space,and the optimum parameter is obtained according to the demands of practical applications.The results show that the parallel mechanism can meet the motion requirements of ankle rehabilitation and has excellent kinematic performance in its rehabilitation range,which provides a theoretical basis for the prototype design and experimental verification. 展开更多
关键词 Ankle rehabilitation Parallel mechanism Kinematic analysis Parameter optimization
下载PDF
Numerical and experimental investigation on hydraulic-electric rock fragmentation of heterogeneous granite
13
作者 Xiaohua Zhu Ling He +3 位作者 Weiji Liu Yunxu Luo Youjian Zhang Wuji Tang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期15-29,共15页
Hydraulic-electric rock fragmentation(HERF)plays a significant role in improving the efficiency of high voltage pulse rock breaking.However,the underlying mechanism of HERF remains unclear.In this study,considering th... Hydraulic-electric rock fragmentation(HERF)plays a significant role in improving the efficiency of high voltage pulse rock breaking.However,the underlying mechanism of HERF remains unclear.In this study,considering the heterogeneity of the rock,microscopic thermodynamic properties,and shockwave time domain waveforms,based on the shockwave model,digital imaging technology and the discrete element method,the cyclic loading numerical simulations of HERF is achieved by coupling electrical,thermal,and solid mechanics under different formation temperatures,confining pressure,initial peak voltage,electrode bit diameter,and loading times.Meanwhile,the HERF discharge system is conducive to the laboratory experiments with various electrical parameters and the resulting broken pits are numerically reconstructed to obtain the geometric parameters.The results show that,the completely broken area consists of powdery rock debris.In the pre-broken zone,the mineral cementation of the rock determines the transition of type CⅠcracks to type CⅡand type CⅢcracks.Furthermore,the peak pressure of the shockwave increased with initial peak voltage but decreased with electrode bit diameter,while the wave front time reduced.Moreover,increasing well depth,formation temperature and confining pressure augment and inhibit HERF,but once confining pressure surpassed the threshold of 60 MPa for 152.40,215.90,and 228.60 mm electrode bits,and 40 MPa for 309.88 mm electrode bits,HERF is promoted.Additionally,for the same kind of rock,the volume and width of the broken pit increase with higher initial peak voltage and rock fissures will promote HERF.Eventually,the electrode drill bit with a 215.90 mm diameter is more suitable for drilling pink granite.This research contributes to a better microscopic understanding of HERF and provides valuable insights for electrode bit selection,as well as the optimization of circuit parameters for HERF technology. 展开更多
关键词 Hydraulic-electric rock fragmentation SHOCKWAVE Thermodynamics MICROCRACKS Weak Linear Parallel Bond Model
下载PDF
Dynamic Modeling and Experimental Verification of an RPR Type Compliant Paralle Mechanism with Low Orders
14
作者 Shuang Zhang Jingfang Liu +1 位作者 Huafeng Ding Yanbin Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期83-94,共12页
Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The ... Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The mechanism with two out-of-plane rotational and one lifting degrees of freedom(DoFs)plays an important role in posture adjustment.Based on elastic beam theory,the stiffness matrix and mass matrix of the beam element are established where the moment of inertia is considered.To improve solving efficiency,a dynamic model with low orders of the mechanism is established based on a modified modal synthesis method.Firstly,each branch of the RPR type mechanism is divided into a substructure.Subsequently,a set of hypothetical modes of each substructure is obtained based on the C-B method.Finally,dynamic equation of the whole mechanism is established by the substructure assembly.A dynamic experiment is conducted to verify the dynamic characteristics of the compliant mechanism. 展开更多
关键词 Compliant parallel mechanism Dynamic model Modal synthesis method Dynamic experiment
下载PDF
Unveiling evapotranspiration patterns and energy balance in a subalpine forest of the Qinghai-Tibet Plateau:observations and analysis from an eddy covariance system
15
作者 Niu Zhu Jinniu Wang +6 位作者 Dongliang Luo Xufeng Wang Cheng Shen Ning Wu Ning Zhang Binghui Tian Aihong Gai 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期175-188,共14页
Evapotranspiration is an important parameter used to characterize the water cycle of ecosystems.To under-stand the properties of the evapotranspiration and energy balance of a subalpine forest in the southeastern Qing... Evapotranspiration is an important parameter used to characterize the water cycle of ecosystems.To under-stand the properties of the evapotranspiration and energy balance of a subalpine forest in the southeastern Qinghai-Tibet Plateau,an open-path eddy covariance system was set up to monitor the forest from November 2020 to October 2021 in a core area of the Three Parallel Rivers in the Qing-hai-Tibet Plateau.The results show that the evapotranspira-tion peaked daily,the maximum occurring between 11:00 and 15:00.Environmental factors had significant effects on evapotranspiration,among them,net radiation the greatest(R^(2)=0.487),and relative humidity the least(R^(2)=0.001).The energy flux varied considerably in different seasons and sensible heat flux accounted for the main part of turbulent energy.The energy balance ratio in the dormant season was less than that in the growing season,and there is an energy imbalance at the site on an annual time scale. 展开更多
关键词 EVAPOTRANSPIRATION Energy balance Subalpine forest Three Parallel Rivers region Southeast Qinghai-Tibet Plateau
下载PDF
THE NONLINEAR STABILITY OF PLANE PARALLEL SHEAR FLOWS WITH RESPECT TO TILTED PERTURBATIONS
16
作者 许兰喜 关芳芳 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期1036-1045,共10页
The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direc... The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direction of the basic flows.By defining an energy functional,it is proven that plane parallel shear flows are unconditionally nonlinearly exponentially stable for tilted streamwise perturbation when the Reynolds number is below a certain critical value and the boundary conditions are either rigid or stress-free.In the case of stress-free boundaries,by taking advantage of the poloidal-toroidal decomposition of a solenoidal field to define energy functionals,it can be even shown that plane parallel shear flows are unconditionally nonlinearly exponentially stable for all Reynolds numbers,where the tilted perturbation can be either spanwise or streamwise. 展开更多
关键词 plane parallel shear flows energy method energy functional nonlinear stability Reynolds number
下载PDF
MPI/OpenMP-Based Parallel Solver for Imprint Forming Simulation
17
作者 Yang Li Jiangping Xu +2 位作者 Yun Liu Wen Zhong Fei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期461-483,共23页
In this research,we present the pure open multi-processing(OpenMP),pure message passing interface(MPI),and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining pr... In this research,we present the pure open multi-processing(OpenMP),pure message passing interface(MPI),and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining process to address the challenge of capturing fine relief features of approximately 50 microns.Achieving such precision demands the utilization of at least 7 million tetrahedron elements,surpassing the capabilities of traditional serial programs previously developed.To mitigate data races when calculating internal forces,intermediate arrays are introduced within the OpenMP directive.This helps ensure proper synchronization and avoid conflicts during parallel execution.Additionally,in the MPI implementation,the coins are partitioned into the desired number of regions.This division allows for efficient distribution of computational tasks across multiple processes.Numerical simulation examples are conducted to compare the three solvers with serial programs,evaluating correctness,acceleration ratio,and parallel efficiency.The results reveal a relative error of approximately 0.3%in forming force among the parallel and serial solvers,while the predicted insufficient material zones align with experimental observations.Additionally,speedup ratio and parallel efficiency are assessed for the coining process simulation.The pureMPI parallel solver achieves a maximum acceleration of 9.5 on a single computer(utilizing 12 cores)and the hybrid solver exhibits a speedup ratio of 136 in a cluster(using 6 compute nodes and 12 cores per compute node),showing the strong scalability of the hybrid MPI/OpenMP programming model.This approach effectively meets the simulation requirements for commemorative coins with intricate relief patterns. 展开更多
关键词 Hybrid MPI/OpenMP parallel computing MPI OPENMP imprint forming
下载PDF
Static Analysis Techniques for Fixing Software Defects in MPI-Based Parallel Programs
18
作者 Norah Abdullah Al-Johany Sanaa Abdullah Sharaf +1 位作者 Fathy Elbouraey Eassa Reem Abdulaziz Alnanih 《Computers, Materials & Continua》 SCIE EI 2024年第5期3139-3173,共35页
The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of par... The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of parallelapplications. Detecting and correcting these defects is crucial, yet there is a lack of published models specificallydesigned for correctingMPI defects. To address this, we propose a model for detecting and correcting MPI defects(DC_MPI), which aims to detect and correct defects in various types of MPI communication, including blockingpoint-to-point (BPTP), nonblocking point-to-point (NBPTP), and collective communication (CC). The defectsaddressed by the DC_MPI model include illegal MPI calls, deadlocks (DL), race conditions (RC), and messagemismatches (MM). To assess the effectiveness of the DC_MPI model, we performed experiments on a datasetconsisting of 40 MPI codes. The results indicate that the model achieved a detection rate of 37 out of 40 codes,resulting in an overall detection accuracy of 92.5%. Additionally, the execution duration of the DC_MPI modelranged from 0.81 to 1.36 s. These findings show that the DC_MPI model is useful in detecting and correctingdefects in MPI implementations, thereby enhancing the reliability and performance of parallel applications. TheDC_MPImodel fills an important research gap and provides a valuable tool for improving the quality ofMPI-basedparallel computing systems. 展开更多
关键词 High-performance computing parallel computing software engineering software defect message passing interface DEADLOCK
下载PDF
Joint computation offloading and parallel scheduling to maximize delay-guarantee in cooperative MEC systems
19
作者 Mian Guo Mithun Mukherjee +3 位作者 Jaime Lloret Lei Li Quansheng Guan Fei Ji 《Digital Communications and Networks》 SCIE CSCD 2024年第3期693-705,共13页
The growing development of the Internet of Things(IoT)is accelerating the emergence and growth of new IoT services and applications,which will result in massive amounts of data being generated,transmitted and pro-cess... The growing development of the Internet of Things(IoT)is accelerating the emergence and growth of new IoT services and applications,which will result in massive amounts of data being generated,transmitted and pro-cessed in wireless communication networks.Mobile Edge Computing(MEC)is a desired paradigm to timely process the data from IoT for value maximization.In MEC,a number of computing-capable devices are deployed at the network edge near data sources to support edge computing,such that the long network transmission delay in cloud computing paradigm could be avoided.Since an edge device might not always have sufficient resources to process the massive amount of data,computation offloading is significantly important considering the coop-eration among edge devices.However,the dynamic traffic characteristics and heterogeneous computing capa-bilities of edge devices challenge the offloading.In addition,different scheduling schemes might provide different computation delays to the offloaded tasks.Thus,offloading in mobile nodes and scheduling in the MEC server are coupled to determine service delay.This paper seeks to guarantee low delay for computation intensive applica-tions by jointly optimizing the offloading and scheduling in such an MEC system.We propose a Delay-Greedy Computation Offloading(DGCO)algorithm to make offloading decisions for new tasks in distributed computing-enabled mobile devices.A Reinforcement Learning-based Parallel Scheduling(RLPS)algorithm is further designed to schedule offloaded tasks in the multi-core MEC server.With an offloading delay broadcast mechanism,the DGCO and RLPS cooperate to achieve the goal of delay-guarantee-ratio maximization.Finally,the simulation results show that our proposal can bound the end-to-end delay of various tasks.Even under slightly heavy task load,the delay-guarantee-ratio given by DGCO-RLPS can still approximate 95%,while that given by benchmarked algorithms is reduced to intolerable value.The simulation results are demonstrated the effective-ness of DGCO-RLPS for delay guarantee in MEC. 展开更多
关键词 Edge computing Computation offloading Parallel scheduling Mobile-edge cooperation Delay guarantee
下载PDF
Effective Capacity of URLLC over Parallel Fading Channels with Imperfect Channel State Information
20
作者 Peng Hongsen Tao Meixia 《China Communications》 SCIE CSCD 2024年第5期45-63,共19页
This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state... This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems. 展开更多
关键词 effective capacity finite blocklength regime imperfect CSI parallel fading channels URLLC
下载PDF
上一页 1 2 111 下一页 到第
使用帮助 返回顶部