期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Multi-Modal Medical Image Fusion Based on Improved Parameter Adaptive PCNN and Latent Low-Rank Representation
1
作者 Zirui Tang Xianchun Zhou 《Instrumentation》 2024年第2期53-63,共11页
Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical ... Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical image fusion solutions to protect image details and significant information, a new multimodality medical image fusion method(NSST-PAPCNNLatLRR) is proposed in this paper. Firstly, the high and low-frequency sub-band coefficients are obtained by decomposing the source image using NSST. Then, the latent low-rank representation algorithm is used to process the low-frequency sub-band coefficients;An improved PAPCNN algorithm is also proposed for the fusion of high-frequency sub-band coefficients. The improved PAPCNN model was based on the automatic setting of the parameters, and the optimal method was configured for the time decay factor αe. The experimental results show that, in comparison with the five mainstream fusion algorithms, the new algorithm has significantly improved the visual effect over the comparison algorithm,enhanced the ability to characterize important information in images, and further improved the ability to protect the detailed information;the new algorithm has achieved at least four firsts in six objective indexes. 展开更多
关键词 image fusion improved parameter adaptive pcnn non-subsampled shear-wave transform latent low-rank representation
下载PDF
Multimodal Medical Image Fusion Based on Parameter Adaptive PCNN and Latent Low-rank Representation 被引量:1
2
作者 WANG Wenyan ZHOU Xianchun YANG Liangjian 《Instrumentation》 2023年第1期45-58,共14页
Medical image fusion has been developed as an efficient assistive technology in various clinical applications such as medical diagnosis and treatment planning.Aiming at the problem of insufficient protection of image ... Medical image fusion has been developed as an efficient assistive technology in various clinical applications such as medical diagnosis and treatment planning.Aiming at the problem of insufficient protection of image contour and detail information by traditional image fusion methods,a new multimodal medical image fusion method is proposed.This method first uses non-subsampled shearlet transform to decompose the source image to obtain high and low frequency subband coefficients,then uses the latent low rank representation algorithm to fuse the low frequency subband coefficients,and applies the improved PAPCNN algorithm to fuse the high frequency subband coefficients.Finally,based on the automatic setting of parameters,the optimization method configuration of the time decay factorαe is carried out.The experimental results show that the proposed method solves the problems of difficult parameter setting and insufficient detail protection ability in traditional PCNN algorithm fusion images,and at the same time,it has achieved great improvement in visual quality and objective evaluation indicators. 展开更多
关键词 Image Fusion Non-subsampled Shearlet Transform parameter Adaptive PCNN Latent Low-rank Representation
下载PDF
THE ADAPTIVE PARAMETER INCREMENTAL METHOD FOR THE ANALYSIS OF SNAPPING PROBLEMS
3
作者 赵琪 叶天麒 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1995年第9期851-858,共8页
By the improvement of Riks’and Crisfield’s arc-length method,the adaptiveparameter incremental method is preasted for predicting the snapping response ofstructures. Its justification is fulfilled. Finally,the effect... By the improvement of Riks’and Crisfield’s arc-length method,the adaptiveparameter incremental method is preasted for predicting the snapping response ofstructures. Its justification is fulfilled. Finally,the effectiveness of this method isdemonstrated by solving the snapping response of spherical caps subjected to centrallydistributed pressures. 展开更多
关键词 snapping problems adaptive parameter incremental method
下载PDF
A New Adaptive Regularization Parameter Selection Based on Expected Patch Log Likelihood
4
作者 Jianwei Zhang Ze Qin Shunfeng Wang 《Journal of Cyber Security》 2020年第1期25-36,共12页
Digital images have been applied to various areas such as evidence in courts.However,it always suffers from noise by criminals.This type of computer network security has become a hot issue that can’t be ignored.In th... Digital images have been applied to various areas such as evidence in courts.However,it always suffers from noise by criminals.This type of computer network security has become a hot issue that can’t be ignored.In this paper,we focus on noise removal so as to provide guarantees for computer network security.Firstly,we introduce a well-known denoising method called Expected Patch Log Likelihood(EPLL)with Gaussian Mixture Model as its prior.This method achieves exciting results in noise removal.However,there remain problems to be solved such as preserving the edge and meaningful details in image denoising,cause it considers a constant as regularization parameter so that we denoise with the same strength on the whole image.This leads to a problem that edges and meaningful details may be oversmoothed.Under the consideration of preserving edges of the image,we introduce a new adaptive parameter selection based on EPLL by the use of the image gradient and variance,which varies with different regions of the image.Moreover,we add a gradient fidelity term to relieve staircase effect and preserve more details.The experiment shows that our proposed method proves the effectiveness not only in vision but also on quantitative evaluation. 展开更多
关键词 Computer network security image denoising EPLL adaptive parameter EDGES
下载PDF
Adaptive Parallel Particle Swarm Optimization Algorithm Based on Dynamic Exchange of Control Parameters
5
作者 Masaaki Suzuki 《American Journal of Operations Research》 2016年第5期401-413,共14页
Updating the velocity in particle swarm optimization (PSO) consists of three terms: the inertia term, the cognitive term and the social term. The balance of these terms determines the balance of the global and local s... Updating the velocity in particle swarm optimization (PSO) consists of three terms: the inertia term, the cognitive term and the social term. The balance of these terms determines the balance of the global and local search abilities, and therefore the performance of PSO. In this work, an adaptive parallel PSO algorithm, which is based on the dynamic exchange of control parameters between adjacent swarms, has been developed. The proposed PSO algorithm enables us to adaptively optimize inertia factors, learning factors and swarm activity. By performing simulations of a search for the global minimum of a benchmark multimodal function, we have found that the proposed PSO successfully provides appropriate control parameter values, and thus good global optimization performance. 展开更多
关键词 Swarm Intelligence Particle Swarm Optimization Global Optimization Metaheuristics Adaptive parameter Tuning
下载PDF
A Parameter Adaptive Method for Image Smoothing
6
作者 Suwei Wang Xiang Ma Xuemei Li 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第4期1138-1151,共14页
Edge is the key information in the process of image smoothing. Some edges, especially the weak edges, are difficult to maintain, which result in the local area being over-smoothed. For the protection of weak edges, we... Edge is the key information in the process of image smoothing. Some edges, especially the weak edges, are difficult to maintain, which result in the local area being over-smoothed. For the protection of weak edges, we propose an image smoothing algorithm based on global sparse structure and parameter adaptation. The algorithm decomposes the image into high frequency and low frequency part based on global sparse structure. The low frequency part contains less texture information which is relatively easy to smoothen. The high frequency part is more sensitive to edge information so it is more suitable for the selection of smoothing parameters. To reduce the computational complexity and improve the effect, we propose a bicubic polynomial fitting method to fit all the sample values into a surface. Finally, we use Alternating Direction Method of Multipliers (ADMM) to unify the whole algorithm and obtain the smoothed results by iterative optimization. Compared with traditional methods and deep learning methods, as well as the application tasks of edge extraction, image abstraction, pseudo-boundary removal, and image enhancement, it shows that our algorithm can preserve the local weak edge of the image more effectively, and the visual effect of smoothed results is better. 展开更多
关键词 image smoothing parameter adaptation bicubic interpolation polynomial fitting
原文传递
Application of a Parallel Adaptive Cuckoo Search Algorithm in the Rectangle Layout Problem 被引量:1
7
作者 Weimin Zheng Mingchao Si +2 位作者 Xiao Sui Shuchuan Chu Jengshyang Pan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2173-2196,共24页
The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution.It has good performance in global optimization fields such as maximization.In this paper,a new adaptive parameter stra... The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution.It has good performance in global optimization fields such as maximization.In this paper,a new adaptive parameter strategy and a parallel communication strategy are proposed to further improve the Cuckoo Search(CS)algorithm.This strategy greatly improves the convergence speed and accuracy of the algorithm and strengthens the algorithm’s ability to jump out of the local optimal.This paper compares the optimization performance of Parallel Adaptive Cuckoo Search(PACS)with CS,Parallel Cuckoo Search(PCS),Particle Swarm Optimization(PSO),Sine Cosine Algorithm(SCA),Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Differential Evolution(DE)and Artificial Bee Colony(ABC)algorithms by using the CEC-2013 test function.The results show that PACS algorithmoutperforms other algorithms in 20 of 28 test functions.Due to the superior performance of PACS algorithm,this paper uses it to solve the problem of the rectangular layout.Experimental results show that this scheme has a significant effect,and the material utilization rate is improved from89.5%to 97.8%after optimization. 展开更多
关键词 Rectangular layout cuckoo search algorithm parallel communication strategy adaptive parameter
下载PDF
Virtual Synchronous Generator Adaptive Control of Energy Storage Power Station Based on Physical Constraints
8
作者 Yunfan Huang Qingquan Lv +1 位作者 Zhenzhen Zhang Haiying Dong 《Energy Engineering》 EI 2023年第6期1401-1420,共20页
The virtual synchronous generator(VSG)can simulate synchronous machine’s operation mechanism in the control link of an energy storage converter,so that an electrochemical energy storage power station has the ability ... The virtual synchronous generator(VSG)can simulate synchronous machine’s operation mechanism in the control link of an energy storage converter,so that an electrochemical energy storage power station has the ability to actively support the power grid,from passive regulation to active support.Since energy storage is an important physical basis for realizing the inertia and damping characteristics in VSG control,energy storage constraints of the physical characteristics on the system control parameters are analyzed to provide a basis for the system parameter tuning.In a classic VSG control,its virtual inertia and damping coefficient remain unchanged.When the grid load changes greatly,the constant control strategy most likely result in the grid frequency deviation beyond the stable operation standard limitations.To solve this problem,a comprehensive control strategy considering electrified wire netting demand and energy storage unit state of charge(SOC)is proposed,and an adaptive optimization method of VSG parameters under different SOC is given.The energy storage battery can maintain a safe working state at any time and be smoothly disconnected,which can effectively improve the output frequency performance of energy storage system.Simulation results further demonstrated the effectiveness of the VSG control theoretical analysis. 展开更多
关键词 VSG energy storage power station physical constraints of energy storage adaptive parameter frequency performance
下载PDF
Strengthened Initialization of Adaptive Cross-Generation Differential Evolution
9
作者 Wei Wan Gaige Wang Junyu Dong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1495-1516,共22页
Adaptive Cross-Generation Differential Evolution(ACGDE)is a recently-introduced algorithm for solving multiobjective problems with remarkable performance compared to other evolutionary algorithms(EAs).However,its conv... Adaptive Cross-Generation Differential Evolution(ACGDE)is a recently-introduced algorithm for solving multiobjective problems with remarkable performance compared to other evolutionary algorithms(EAs).However,its convergence and diversity are not satisfactory compared with the latest algorithms.In order to adapt to the current environment,ACGDE requires improvements in many aspects,such as its initialization and mutant operator.In this paper,an enhanced version is proposed,namely SIACGDE.It incorporates a strengthened initialization strategy and optimized parameters in contrast to its predecessor.These improvements make the direction of crossgeneration mutation more clearly and the ability of searching more efficiently.The experiments show that the new algorithm has better diversity and improves convergence to a certain extent.At the same time,SIACGDE outperforms other state-of-the-art algorithms on four metrics of 24 test problems. 展开更多
关键词 Differential Evolution(DE) multi-objective optimization(MO) opposition-based learning parameter adaptation
下载PDF
Adaptive Sliding-Mode Control of an Automotive Electronic Throttle in the Presence of Input Saturation Constraint 被引量:5
10
作者 Rui Bai 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第4期878-884,共7页
In modern vehicles, electronic throttle(ET) has been widely utilized to control the airflow into gasoline engine. To solve the control difficulties with an ET, such as strong nonlinearity,unknown model parameters and ... In modern vehicles, electronic throttle(ET) has been widely utilized to control the airflow into gasoline engine. To solve the control difficulties with an ET, such as strong nonlinearity,unknown model parameters and input saturation constraints,an adaptive sliding-mode tracking control strategy for an ET is presented. Compared with the existing control strategies for an ET, input saturation constraints and parameter uncertainties are adequately considered in the proposed control strategy. At first, the nonlinear dynamic model for control of an ET is described. According to the dynamical model, the nonlinear adaptive sliding-mode tracking control method is presented,where parameter adaptive laws and auxiliary design system are employed. Parameter adaptive law is given to estimate the unknown parameter with an ET. An auxiliary system is designed,and its state is utilized in the tracking control method to handle the input saturation. Stability proof and analysis of the adaptive sliding-mode control method is performed by using Lyapunov stability theory. Finally, the reliability and feasibility of the proposed control strategy are evaluated by computer simulation.Simulation research shows that the proposed sliding-mode control strategy can provide good control performance for an ET. 展开更多
关键词 Auxiliary design system electronic throttle(ET) input saturation parameter adaptive law sliding-mode control tracking control
下载PDF
Adaptive backtracking search optimization algorithm with pattern search for numerical optimization 被引量:6
11
作者 Shu Wang Xinyu Da +1 位作者 Mudong Li Tong Han 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期395-406,共12页
The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powe... The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm. 展开更多
关键词 evolutionary algorithm backtracking search optimization algorithm(BSA) Hooke-Jeeves pattern search parameter adaption numerical optimization
下载PDF
An improved flexible tolerance method for solving nonlinear constrained optimization problems:Application in mass integration
12
作者 Alice Medeiros Lima Wu Hong Kwong Antonio José Goncalves Cruz 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第5期617-631,共15页
This paper proposes the use of the flexible tolerance method(FTM) modified with adaptive Nelder–Mead parameters and barrier to solve constrained optimization problems. The problems used to analyze the performance of ... This paper proposes the use of the flexible tolerance method(FTM) modified with adaptive Nelder–Mead parameters and barrier to solve constrained optimization problems. The problems used to analyze the performance of the methods were taken from G-Suite functions, and the methods with the best performance were applied in mass integration problems. Four methods were proposed:(1) flexible tolerance method(FTM) using adaptive parameters(FTMA),(2) flexible tolerance method with scaling(FTMS) and with adaptive parameters(FTMAS),(3) FTMS including the barrier modification(MFTMS) and(4) MFTMS hybridized with PSO(MFTMS-PSO). The success rates of these methods were 100%(MFTMS), 85%(MFTMS-PSO), 40%(FTMAS) and 30%(FTMA).Numerical experiments indicated that the MFTMS could efficiently and reliably improve the accuracy of global optima. In mass integration, the method was able, from current process situation, to reach the optimum process configuration that includes integration issues, which was not possible using FTM in its standard formulation. The hybridization of FTMS with PSO(without barrier), FTMS-PSO, was also able to solve mass integration problems efficiently. 展开更多
关键词 Flexible tolerance method Adaptive parameters SCALING Constrained optimization BARRIER PSO Mass integration
下载PDF
LAVRENTIEV'S REGULARIZATION METHOD FOR NONLINEAR ILL-POSED EQUATIONS IN BANACH SPACES
13
作者 Santhosh GEORGE C.D.SREEDEEP 《Acta Mathematica Scientia》 SCIE CSCD 2018年第1期303-314,共12页
In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. ... In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. Using general HSlder type source condition we obtain an optimal order error estimate. Also we consider the adaptive parameter choice strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter. 展开更多
关键词 nonlinear ill-posed problem Banach space Lavrentiev regularization m-accretive mappings adaptive parameter choice strategy
下载PDF
Identification of Plasma Boundary and Position for HL-2A Tokamak
14
作者 王中天 毛国平 +3 位作者 杨青巍 张锦华 高喆 何也熙 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第4期2905-2907,共3页
Using the virtual-case principle, the plasma boundary, the plasma current center, and the x-point are identified for the HL-2A tokamak. The plasma current is represented by the current center and the virtual multipole... Using the virtual-case principle, the plasma boundary, the plasma current center, and the x-point are identified for the HL-2A tokamak. The plasma current is represented by the current center and the virtual multipole moments which produce a magnetic flux in a form of polynomial. Adaptive parameters in the polynomial are determined by the least-square fit of the poloidal magnetic fields. The measurement of the magnetic field is performed using pick-up coils. The virtual-case principle is applied outside the plasma boundary. The virtual-case currents decide the position of the current center and produce a negative confinement magnetic field inside the plasma and the magnetic field generated by the plasma current outside the plasma boundary. The convergence is fast enough to get a picture between the sequent shots. The configuration reconstructed is in good agreement with the TV image taken by camera with a tangential view. 展开更多
关键词 virtual-case principle IDENTIFICATION adaptive parameter
下载PDF
Convergence Track Based Adaptive Differential Evolution Algorithm(CTbADE)
15
作者 Qamar Abbas Khalid Mahmood Malik +4 位作者 Abdul Khader Jilani Saudagar Muhammad Badruddin Khan Mozaherul Hoque Abul Hasanat Abdullah AlTameem Mohammed AlKhathami 《Computers, Materials & Continua》 SCIE EI 2022年第7期1229-1250,共22页
One of the challenging problems with evolutionary computing algorithms is to maintain the balance between exploration and exploitation capability in order to search global optima.A novel convergence track based adapti... One of the challenging problems with evolutionary computing algorithms is to maintain the balance between exploration and exploitation capability in order to search global optima.A novel convergence track based adaptive differential evolution(CTbADE)algorithm is presented in this research paper.The crossover rate and mutation probability parameters in a differential evolution algorithm have a significant role in searching global optima.A more diverse population improves the global searching capability and helps to escape from the local optima problem.Tracking the convergence path over time helps enhance the searching speed of a differential evolution algorithm for varying problems.An adaptive powerful parameter-controlled sequences utilized learning period-based memory and following convergence track over time are introduced in this paper.The proposed algorithm will be helpful in maintaining the equilibrium between an algorithm’s exploration and exploitation capability.A comprehensive test suite of standard benchmark problems with different natures,i.e.,unimodal/multimodal and separable/non-separable,was used to test the convergence power of the proposed CTbADE algorithm.Experimental results show the significant performance of the CTbADE algorithm in terms of average fitness,solution quality,and convergence speed when compared with standard differential evolution algorithms and a few other commonly used state-of-the-art algorithms,such as jDE,CoDE,and EPSDE algorithms.This algorithm will prove to be a significant addition to the literature in order to solve real time problems and to optimize computationalmodels with a high number of parameters to adjust during the problem-solving process. 展开更多
关键词 Differential evolution function optimization convergence track parameter sequence adaptive control parameters
下载PDF
Adaptive On-line Operation Guide for Dry Gas-to-ethylbenzene Reactor
16
作者 钱新华 贾世阳 +3 位作者 苏兴 陈悦 王克峰 姚平经 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第3期419-424,共6页
In this paper,a third-generation dry gas-to-ethylbenzene process in a factory of PetroChina is considered.For the gradual catalyst deactivation in the alkylation reactor,a model is established with the parameters esti... In this paper,a third-generation dry gas-to-ethylbenzene process in a factory of PetroChina is considered.For the gradual catalyst deactivation in the alkylation reactor,a model is established with the parameters estimated from the reaction rate equation of alkylation based on the on-site data and those from laboratory analysis. The real-time dynamic simulation of the alkylation process is carried out,in which the module accuracy is ensured by using OPC(Object linking and embedding for Process Control)technique and adaptive correction of model parameters.Both the current and future operation temperature can be predicted. 展开更多
关键词 dry gas-to-ethylbenzene reactor catalyst deactivation OPC technology adaptive correction of model parameter online operation guide
下载PDF
A New Neuro-Fuzzy Adaptive Genetic Algorithm
17
作者 ZHU Lili ZHANG Huanchun JING Yazhi(Faculty 302,Nanjing University of Aeronautics and Astronautics,Nanjing 210016 China) 《Journal of Electronic Science and Technology of China》 2003年第1期63-68,共6页
Novel neuro-fuzzy techniques are used to dynamically control parameter settings ofgenetic algorithms (GAs).The benchmark routine is an adaptive genetic algorithm (AGA) that uses afuzzy knowledge-based system to contro... Novel neuro-fuzzy techniques are used to dynamically control parameter settings ofgenetic algorithms (GAs).The benchmark routine is an adaptive genetic algorithm (AGA) that uses afuzzy knowledge-based system to control GA parameters.The self-learning ability of the cerebellar modelariculation controller (CMAC) neural network makes it possible for on-line learning the knowledge onGAs throughout the run.Automatically designing and tuning the fuzzy knowledge-base system,neuro-fuzzy techniques based on CMAC can find the optimized fuzzy system for AGA by the renhanced learningmethod.The Results from initial experiments show a Dynamic Parametric AGA system designed by theproposed automatic method and indicate the general applicability of the neuro-fuzzy AGA to a widerange of combinatorial optimization. 展开更多
关键词 genetic algorithm fuzzy logic control CMAC neural network adaptive parameter control
下载PDF
Differential Evolution with Adaptive Mutation and Parameter Control Using Lvy Probability Distribution 被引量:2
18
作者 贺仁杰 杨振宇 《Journal of Computer Science & Technology》 SCIE EI CSCD 2012年第5期1035-1055,共21页
Differential evolution (DE) has become a very popular and effective global optimization algorithm in the area of evolutionary computation. In spite of many advantages such as conceptual simplicity, high efficiency a... Differential evolution (DE) has become a very popular and effective global optimization algorithm in the area of evolutionary computation. In spite of many advantages such as conceptual simplicity, high efficiency and ease of use, DE has two main components, i.e., mutation scheme and parameter control, which significantly influence its performance. In this paper we intend to improve the performance of DE by using carefully considered strategies for both of the two components. We first design an adaptive mutation scheme, which adaptively makes use of the bias of superior individuals when generating new solutions. Although introducing such a bias is not a new idea, existing methods often use heuristic rules to control the bias. They can hardly maintain the appropriate balance between exploration and exploitation during the search process, because the preferred bias is often problem and evolution-stage dependent. Instead of using any fixed rule, a novel strategy is adopted in the new adaptive mutation scheme to adjust the bias dynamically based on the identified local fitness landscape captured by the current population. As for the other component, i.e., parameter control, we propose a mechanism by using the Levy probability distribution to adaptively control the scale factor F of DE. For every mutation in each generation, an Fi is produced from one of four different Levy distributions according to their historical performance. With the adaptive mutation scheme and parameter control using Levy distribution as the main components, we present a new DE variant called Levy DE (LDE). Experimental studies were carried out on a broad range of benchmark functions in global numerical optimization. The results show that LDE is very competitive, and both of the two main components have contributed to its overall performance. The scalability of LDE is also discussed by conducting experiments on some selected benchmark functions with dimensions from 30 to 200. 展开更多
关键词 differential evolution global optimization L6vy distribution parameter adaptation
原文传递
Enhancing the Performance of JADE Using Two-phase Parameter Control Scheme and Its Application 被引量:1
19
作者 Qin-Qin Fan Yi-Lian Zhang +1 位作者 Xue-Feng Yan Zhi-Huan Wang 《International Journal of Automation and computing》 EI CSCD 2018年第4期462-473,共12页
The search efficiency of differential evolution (DE) algorithm is greatly impacted by its control parameters. Although many adaptation/self-adaptation techniques can automatically find suitable control parameters fo... The search efficiency of differential evolution (DE) algorithm is greatly impacted by its control parameters. Although many adaptation/self-adaptation techniques can automatically find suitable control parameters for the DE, most techniques are based on pop- ulation information which may be misleading in solving complex optimization problems. Therefore, a self-adaptive DE (i.e., JADE) using two-phase parameter control scheme (TPC-JADE) is proposed to enhance the performance of DE in the current study. In the TPC-JADE, an adaptation technique is utilized to generate the control parameters in the early population evolution, and a well-known empirical guideline is used to update the control parameters in the later evolution stages. The TPC-JADE is compared with four state-of-the-art DE variants on two famous test suites (i.e., IEEE CEC2005 and IEEE CEC2015). Results indicate that the overall performance of the TPC-JADE is better than that of the other compared algorithms. In addition, the proposed algorithm is utilized to obtain optimal nutrient and inducer feeding for the Lee-Ramirez bioreactor. Experimental results show that the TPC-JADE can perform well on an actual dynamic optimization problem. 展开更多
关键词 Differential evolution(DE)algorithm evolutionary computation dynamic optimization control parameter adaptation chemical processes.
原文传递
Feedback Mechanism-driven Mutation Reptile Search Algorithm for Optimizing Interpolation Developable Surfaces
20
作者 Gang Hu Jiao Wang +1 位作者 Xiaoni Zhu Muhammad Abbas 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期527-571,共45页
Curvature lines are special and important curves on surfaces.It is of great significance to construct developable surface interpolated on curvature lines in engineering applications.In this paper,the shape optimizatio... Curvature lines are special and important curves on surfaces.It is of great significance to construct developable surface interpolated on curvature lines in engineering applications.In this paper,the shape optimization of generalized cubic ball developable surface interpolated on the curvature line is studied by using the improved reptile search algorithm.Firstly,based on the curvature line of generalized cubic ball curve with shape adjustable,this paper gives the construction method of SGC-Ball developable surface interpolated on the curve.Secondly,the feedback mechanism,adaptive parameters and mutation strategy are introduced into the reptile search algorithm,and the Feedback mechanism-driven improved reptile search algorithm effectively improves the solving precision.On IEEE congress on evolutionary computation 2014,2017,2019 and four engineering design problems,the feedback mechanism-driven improved reptile search algorithm is compared with other representative methods,and the result indicates that the solution performance of the feedback mechanism-driven improved reptile search algorithm is competitive.At last,taking the minimum energy as the evaluation index,the shape optimization model of SGC-Ball interpolation developable surface is established.The developable surface with the minimum energy is achieved with the help of the feedback mechanism-driven improved reptile search algorithm,and the comparison experiment verifies the superiority of the feedback mechanism-driven improved reptile search algorithm for the shape optimization problem. 展开更多
关键词 Reptile search algorithm Feedback mechanism Adaptive parameter Mutation strategy SGC-Ball interpolation developable surface Shape optimization
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部