Novel microarray technologies such as the AB1700 platform from Applied Biosysterns promise significant increases in the signal dynamic range and a higher sensitivity for weakly expressed transcripts. We have compared ...Novel microarray technologies such as the AB1700 platform from Applied Biosysterns promise significant increases in the signal dynamic range and a higher sensitivity for weakly expressed transcripts. We have compared a representative set of AB1700 data with a similarly representative Affymetrix HG-U133A dataset. The AB1700 design extends the signal dynamic detection range at the lower bound by one order of magnitude. The lognormal signal distribution profiles of these highsensitivity data need to be represented by two independent distributions. The additional second distribution covers those transcripts that would have gone undetected using the Affymetrix technology. The signal-dependent variance distribution in the AB1700 data is a non-trivial function of signal intensity, describable using a composite function. The drastically different structure of these highsensitivity transcriptome profiles requires adaptation or even redevelopment of the standard microarray analysis methods. Based on the statistical properties, we have derived a signal variance distribution model for AB1700 data that is necessary for such development. Interestingly, the dual lognormal distribution observed in the AB1700 data reflects two fundamentally different biologic mechanisms of transcription initiation.展开更多
We have previously developed a combined signal/variance distribution model that accounts for the particular statistical properties of datasets generated on the Applied Biosystems AB1700 transcriptome system. Here we s...We have previously developed a combined signal/variance distribution model that accounts for the particular statistical properties of datasets generated on the Applied Biosystems AB1700 transcriptome system. Here we show that this model can be efficiently used to generate synthetic datasets with statistical properties virtually identical to those of the actual data by aid of the JAVA application ace.map creator 1.0 that we have developed. The fundamentally different structure of AB1700 transcriptome profiles requires re-evaluation, adaptation, or even redevelopment of many of the standard microarray analysis methods in order to avoid misinterpretation of the data on the one hand, and to draw full benefit from their increased specificity and sensitivity on the other hand. Our composite data model and the ace.map creator 1.0 application thereby not only present proof of the correctness of our parameter estimation, but also provide a tool for the generation of synthetic test data that will be useful for further development and testing of analysis methods.展开更多
Considering the effect of horizontal Coriolis parameter and the density compactness of seawater, which were often neglected in internal waves discussion, the governing equation of linear internal waves presented by ve...Considering the effect of horizontal Coriolis parameter and the density compactness of seawater, which were often neglected in internal waves discussion, the governing equation of linear internal waves presented by vertical velocity only will be proposed. Under the assumption that the Brunt- Vaeisaelae frequency is exponential, an accurate analytic solution of it is obtained. Finally, the expressions of wave functions are also given.展开更多
文摘Novel microarray technologies such as the AB1700 platform from Applied Biosysterns promise significant increases in the signal dynamic range and a higher sensitivity for weakly expressed transcripts. We have compared a representative set of AB1700 data with a similarly representative Affymetrix HG-U133A dataset. The AB1700 design extends the signal dynamic detection range at the lower bound by one order of magnitude. The lognormal signal distribution profiles of these highsensitivity data need to be represented by two independent distributions. The additional second distribution covers those transcripts that would have gone undetected using the Affymetrix technology. The signal-dependent variance distribution in the AB1700 data is a non-trivial function of signal intensity, describable using a composite function. The drastically different structure of these highsensitivity transcriptome profiles requires adaptation or even redevelopment of the standard microarray analysis methods. Based on the statistical properties, we have derived a signal variance distribution model for AB1700 data that is necessary for such development. Interestingly, the dual lognormal distribution observed in the AB1700 data reflects two fundamentally different biologic mechanisms of transcription initiation.
文摘We have previously developed a combined signal/variance distribution model that accounts for the particular statistical properties of datasets generated on the Applied Biosystems AB1700 transcriptome system. Here we show that this model can be efficiently used to generate synthetic datasets with statistical properties virtually identical to those of the actual data by aid of the JAVA application ace.map creator 1.0 that we have developed. The fundamentally different structure of AB1700 transcriptome profiles requires re-evaluation, adaptation, or even redevelopment of many of the standard microarray analysis methods in order to avoid misinterpretation of the data on the one hand, and to draw full benefit from their increased specificity and sensitivity on the other hand. Our composite data model and the ace.map creator 1.0 application thereby not only present proof of the correctness of our parameter estimation, but also provide a tool for the generation of synthetic test data that will be useful for further development and testing of analysis methods.
文摘Considering the effect of horizontal Coriolis parameter and the density compactness of seawater, which were often neglected in internal waves discussion, the governing equation of linear internal waves presented by vertical velocity only will be proposed. Under the assumption that the Brunt- Vaeisaelae frequency is exponential, an accurate analytic solution of it is obtained. Finally, the expressions of wave functions are also given.