Based on two modified Rosslor hyperchaotic systems, which are derived from the chaotic Rosslor system by introducing a state feedback controller, this paper proposes a new switched Rosslor hyperchaotic system. The swi...Based on two modified Rosslor hyperchaotic systems, which are derived from the chaotic Rosslor system by introducing a state feedback controller, this paper proposes a new switched Rosslor hyperchaotic system. The switched system contains two different hyperchaotic systems and can change its behaviour continuously from one to another via a switching function. On the other hand, it presents a systematic method for designing the circuit of realizing the proposed hyperchaotic system. In this design, circuit state equations are written in normalized dimensionless form by rescaling the time variable. Furthermore, an analogous circuit is designed by using the proposed method and built for verifying the new hyperchaos and the design method. Experimental results show a good agreement between numerical simulations and experimental results.展开更多
Robust parameter design (RPD) is an important issue in experimental designs. If all experimental runs cannot be performed under homogeneous conditions, blocking the units is effective. In this paper, we obtain the c...Robust parameter design (RPD) is an important issue in experimental designs. If all experimental runs cannot be performed under homogeneous conditions, blocking the units is effective. In this paper, we obtain the correspondence relation between fractional factorial RPDs and the blocking schemes for full factorial RPDs. In addition, we provide a construction of optimal blocking schemes that make all main effects and control-by-noise two-factor interactions estimable.展开更多
A water rocket is a rocket system that obtains thrust by injecting water with compressed air of up to about 8 atmospheres. It is usually manufactured using a pressure-resistant PET bottle. The mechanical elements and ...A water rocket is a rocket system that obtains thrust by injecting water with compressed air of up to about 8 atmospheres. It is usually manufactured using a pressure-resistant PET bottle. The mechanical elements and principles contained in the water rocket have much in common with the actual small rocket system, and are suitable as educational and research teaching materials in the field of mechanics. Especially in the field of disaster prevention and mitigation, the use of water rockets is being researched and developed as a rescue tool in the event of a flood or earthquake as a disaster countermeasure. However, since the water rocket is a flying object based on the mechanical principle, it is important to ensure the accuracy and stability of the flight path. In this paper, a mechanical simulator is developed with a numerical calculation program based on the mechanical consideration of water rocket flight performance. In addition, the correlation between the flight distance obtained in the simulation and the estimated flight distance is analyzed by applying a multivariate analysis method and verifying the validity of the flight distance calculated from the result. Based on the verification results, we will apply a statistical optimization method to approach the optimization of flight stability performance conditions for water rockets.展开更多
Traditional passive vibration absorbers are effective only when their natural frequencies are close to those of the excitations. To solve this problem, a vibration absorber with time-delayed feedback control is propos...Traditional passive vibration absorbers are effective only when their natural frequencies are close to those of the excitations. To solve this problem, a vibration absorber with time-delayed feedback control is proposed to suppress vibration of the primary system under excitation with changing frequency. Firstly, the mechanical model of the delay coupled system is established. Then, the displacement transfer ratio of the system is obtained. The stability of the system is analyzed since delay may result in destabilization. Next, in order to design the control parameters, the vibration absorption performances of the proposed time-delayed vibration absorber are studied. The vibration absorption region is shown. The results show that time-delayed feedback control is able to change the response of the system. The effective vibration absorption frequency band is adjustable by tuning the control gain and time delay. The effective frequency band can be widened when choosing appropriate control parameters. The vibration absorption performances can be greatly improved by the time-delayed absorber. In addition, the optimum control parameters are obtained. Finally, the experimental prototype is constructed. Several tests with different control parameters are taken. The experimental and analytical results match quite well.展开更多
This paper describes the construction and enumeration of mixed orthogonal arrays (MOA) to produce optimal experimental designs. A MOA is a multiset whose rows are the different combinations of factor levels, discrete ...This paper describes the construction and enumeration of mixed orthogonal arrays (MOA) to produce optimal experimental designs. A MOA is a multiset whose rows are the different combinations of factor levels, discrete values of the variable under study, having very well defined features such as symmetry and strength three (all main interactions are taken in consideration). The applied methodology blends the fields of combinatorics and group theory by applying the ideas of orbits, stabilizers and isomorphisms to array generation and enumeration. Integer linear programming was used in order to exploit the symmetry property of the arrays under study. The backtrack search algorithm was used to find suitable arrays in the underlying space of possible solutions. To test the performance of the MOAs, an engineered system was used as a case study within the stage of parameter design. The analysis showed how the MOAs were capable of meeting the fundamental engineering design axioms and principles, creating optimal experimental designs within the desired context.展开更多
基金Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No Y105175)the Science Investigation Foundation of Hangzhou Dianzi University, China (Grant No KYS051505010)
文摘Based on two modified Rosslor hyperchaotic systems, which are derived from the chaotic Rosslor system by introducing a state feedback controller, this paper proposes a new switched Rosslor hyperchaotic system. The switched system contains two different hyperchaotic systems and can change its behaviour continuously from one to another via a switching function. On the other hand, it presents a systematic method for designing the circuit of realizing the proposed hyperchaotic system. In this design, circuit state equations are written in normalized dimensionless form by rescaling the time variable. Furthermore, an analogous circuit is designed by using the proposed method and built for verifying the new hyperchaos and the design method. Experimental results show a good agreement between numerical simulations and experimental results.
基金supported by the National Natural Science Foundation of China(1127120511271355+2 种基金11101024 and 11171165)the "131" Talents Program of Tianjinthe Fundamental Research Funds for the Central Universities(65030011 and 65011361)
文摘Robust parameter design (RPD) is an important issue in experimental designs. If all experimental runs cannot be performed under homogeneous conditions, blocking the units is effective. In this paper, we obtain the correspondence relation between fractional factorial RPDs and the blocking schemes for full factorial RPDs. In addition, we provide a construction of optimal blocking schemes that make all main effects and control-by-noise two-factor interactions estimable.
文摘A water rocket is a rocket system that obtains thrust by injecting water with compressed air of up to about 8 atmospheres. It is usually manufactured using a pressure-resistant PET bottle. The mechanical elements and principles contained in the water rocket have much in common with the actual small rocket system, and are suitable as educational and research teaching materials in the field of mechanics. Especially in the field of disaster prevention and mitigation, the use of water rockets is being researched and developed as a rescue tool in the event of a flood or earthquake as a disaster countermeasure. However, since the water rocket is a flying object based on the mechanical principle, it is important to ensure the accuracy and stability of the flight path. In this paper, a mechanical simulator is developed with a numerical calculation program based on the mechanical consideration of water rocket flight performance. In addition, the correlation between the flight distance obtained in the simulation and the estimated flight distance is analyzed by applying a multivariate analysis method and verifying the validity of the flight distance calculated from the result. Based on the verification results, we will apply a statistical optimization method to approach the optimization of flight stability performance conditions for water rockets.
基金the National Natural Science Foundation of China (Grants 11572224 and 11772229).
文摘Traditional passive vibration absorbers are effective only when their natural frequencies are close to those of the excitations. To solve this problem, a vibration absorber with time-delayed feedback control is proposed to suppress vibration of the primary system under excitation with changing frequency. Firstly, the mechanical model of the delay coupled system is established. Then, the displacement transfer ratio of the system is obtained. The stability of the system is analyzed since delay may result in destabilization. Next, in order to design the control parameters, the vibration absorption performances of the proposed time-delayed vibration absorber are studied. The vibration absorption region is shown. The results show that time-delayed feedback control is able to change the response of the system. The effective vibration absorption frequency band is adjustable by tuning the control gain and time delay. The effective frequency band can be widened when choosing appropriate control parameters. The vibration absorption performances can be greatly improved by the time-delayed absorber. In addition, the optimum control parameters are obtained. Finally, the experimental prototype is constructed. Several tests with different control parameters are taken. The experimental and analytical results match quite well.
文摘This paper describes the construction and enumeration of mixed orthogonal arrays (MOA) to produce optimal experimental designs. A MOA is a multiset whose rows are the different combinations of factor levels, discrete values of the variable under study, having very well defined features such as symmetry and strength three (all main interactions are taken in consideration). The applied methodology blends the fields of combinatorics and group theory by applying the ideas of orbits, stabilizers and isomorphisms to array generation and enumeration. Integer linear programming was used in order to exploit the symmetry property of the arrays under study. The backtrack search algorithm was used to find suitable arrays in the underlying space of possible solutions. To test the performance of the MOAs, an engineered system was used as a case study within the stage of parameter design. The analysis showed how the MOAs were capable of meeting the fundamental engineering design axioms and principles, creating optimal experimental designs within the desired context.