Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
To provide a scientific basis for controlling mulberry bacterial blight in Bazhong,Sichuan,China(BSC),this study aimed to isolate and purify pathogenic bacteria from diseased branches of mulberry trees in the region a...To provide a scientific basis for controlling mulberry bacterial blight in Bazhong,Sichuan,China(BSC),this study aimed to isolate and purify pathogenic bacteria from diseased branches of mulberry trees in the region and to clarify their taxonomic status using morphological observation,physiological and biochemical detection,molecular-level identification,and the construction of a phylogenetic tree.A total of 218 bacterial strains were isolated from samples of diseased mulberry branches.Of these,7 strains were identified as pathogenic bacteria based on pathogenicity tests conducted in accordance with Koch’s postulates.Preliminary findings from the analysis of the 16S rRNA sequence indicated that the 7 pathogenic bacteria are members of Klebsiella spp.Morphological observation revealed that the pathogenic bacteria were oval-shaped and had capsules but no spores.They could secrete pectinase,cellulase,and protease and were able to utilize D-glucose,D-mannose,D-maltose,and D-Cellobiose.The 7 strains of pathogenic bacteria exhibited the highest homology with Klebsiella oxytoca.This study identifies Klebsiella oxytoca as the causative agent of mulberry bacterial blight in BSC,laying the foundation for the prevention and control of this pathogen and further investigation into its pathogenic mechanism.展开更多
Perennial grasses have developed intricate mechanisms to adapt to diverse environments,enabling their resistance to various biotic and abiotic stressors.These mechanisms arise from strong natural selection that contri...Perennial grasses have developed intricate mechanisms to adapt to diverse environments,enabling their resistance to various biotic and abiotic stressors.These mechanisms arise from strong natural selection that contributes to enhancing the adaptation of forage plants to various stress conditions.Methods such as antisense RNA technology,CRISPR/Cas9 screening,virus-induced gene silencing,and transgenic technology,are commonly utilized for investigating the stress response functionalities of grass genes in both warm-season and cool-season varieties.This review focuses on the functional identification of stress-resistance genes and regulatory elements in grasses.It synthesizes recent studies on mining functional genes,regulatory genes,and protein kinase-like signaling factors involved in stress responses in grasses.Additionally,the review outlines future research directions,providing theoretical support and references for further exploration of(i)molecular mechanisms underlying grass stress responses,(ii)cultivation and domestication of herbage,(iii)development of high-yield varieties resistant to stress,and(iv)mechanisms and breeding strategies for stress resistance in grasses.展开更多
Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the dam...Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the damping ratio and damage.In this study,methods based on the Hilbert-Huang transform(HHT) are investigated for structural modal parameter identifi cation and damage diagnosis.First,mirror extension and prediction via a radial basis function(RBF) neural network are used to restrain the troublesome end-effect issue in empirical mode decomposition(EMD),which is a crucial part of HHT.Then,the approaches based on HHT combined with other techniques,such as the random decrement technique(RDT),natural excitation technique(NExT) and stochastic subspace identifi cation(SSI),are proposed to identify modal parameters of structures.Furthermore,a damage diagnosis method based on the HHT is also proposed.Time-varying instantaneous frequency and instantaneous energy are used to identify the damage evolution of the structure.The relative amplitude of the Hilbert marginal spectrum is used to identify the damage location of the structure.Finally,acceleration records at gauge points from shaking table testing of a 12-story reinforced concrete frame model are taken to validate the proposed approaches.The results show that the proposed approaches based on HHT for modal parameter identifi cation and damage diagnosis are reliable and practical.展开更多
Existingfirefighting robots are focused on simple storage orfire sup-pression outside buildings rather than detection or recognition.Utilizing a large number of robots using expensive equipment is challenging.This study ...Existingfirefighting robots are focused on simple storage orfire sup-pression outside buildings rather than detection or recognition.Utilizing a large number of robots using expensive equipment is challenging.This study aims to increase the efficiency of search and rescue operations and the safety offirefigh-ters by detecting and identifying the disaster site by recognizing collapsed areas,obstacles,and rescuers on-site.A fusion algorithm combining a camera and three-dimension light detection and ranging(3D LiDAR)is proposed to detect and loca-lize the interiors of disaster sites.The algorithm detects obstacles by analyzingfloor segmentation and edge patterns using a mask regional convolutional neural network(mask R-CNN)features model based on the visual data collected from a parallelly connected camera and 3D LiDAR.People as objects are detected using you only look once version 4(YOLOv4)in the image data to localize persons requiring rescue.The point cloud data based on 3D LiDAR cluster the objects using the density-based spatial clustering of applications with noise(DBSCAN)clustering algorithm and estimate the distance to the actual object using the center point of the clustering result.The proposed artificial intelligence(AI)algorithm was verified based on individual sensors using a sensor-mounted robot in an actual building to detectfloor surfaces,atypical obstacles,and persons requiring rescue.Accordingly,the fused AI algorithm was comparatively verified.展开更多
The global pandemic of novel coronavirus that started in 2019 has ser-iously affected daily lives and placed everyone in a panic condition.Widespread coronavirus led to the adoption of social distancing and people avo...The global pandemic of novel coronavirus that started in 2019 has ser-iously affected daily lives and placed everyone in a panic condition.Widespread coronavirus led to the adoption of social distancing and people avoiding unneces-sary physical contact with each other.The present situation advocates the require-ment of a contactless biometric system that could be used in future authentication systems which makesfingerprint-based person identification ineffective.Periocu-lar biometric is the solution because it does not require physical contact and is able to identify people wearing face masks.However,the periocular biometric region is a small area,and extraction of the required feature is the point of con-cern.This paper has proposed adopted multiple features and emphasis on the periocular region.In the proposed approach,combination of local binary pattern(LBP),color histogram and features in frequency domain have been used with deep learning algorithms for classification.Hence,we extract three types of fea-tures for the classification of periocular regions for biometric.The LBP represents the textual features of the iris while the color histogram represents the frequencies of pixel values in the RGB channel.In order to extract the frequency domain fea-tures,the wavelet transformation is obtained.By learning from these features,a convolutional neural network(CNN)becomes able to discriminate the features and can provide better recognition results.The proposed approach achieved the highest accuracy rates with the lowest false person identification.展开更多
The recently developed machine learning(ML)models have the ability to obtain high detection rate using biomedical signals.Therefore,this article develops an Optimal Sparse Autoencoder based Sleep Stage Classification M...The recently developed machine learning(ML)models have the ability to obtain high detection rate using biomedical signals.Therefore,this article develops an Optimal Sparse Autoencoder based Sleep Stage Classification Model on Electroencephalography(EEG)Biomedical Signals,named OSAE-SSCEEG technique.The major intention of the OSAE-SSCEEG technique is tofind the sleep stage disorders using the EEG biomedical signals.The OSAE-SSCEEG technique primarily undergoes preprocessing using min-max data normalization approach.Moreover,the classification of sleep stages takes place using the Sparse Autoencoder with Smoothed Regularization(SAE-SR)with softmax(SM)approach.Finally,the parameter optimization of the SAE-SR technique is carried out by the use of Coyote Optimization Algorithm(COA)and it leads to boosted classification efficiency.In order to ensure the enhanced performance of the OSAE-SSCEEG technique,a wide ranging simulation analysis is performed and the obtained results demonstrate the betterment of the OSAE-SSCEEG tech-nique over the recent methods.展开更多
Medical image classification becomes a vital part of the design of computer aided diagnosis(CAD)models.The conventional CAD models are majorly dependent upon the shapes,colors,and/or textures that are problem oriented...Medical image classification becomes a vital part of the design of computer aided diagnosis(CAD)models.The conventional CAD models are majorly dependent upon the shapes,colors,and/or textures that are problem oriented and exhibited complementary in medical images.The recently developed deep learning(DL)approaches pave an efficient method of constructing dedicated models for classification problems.But the maximum resolution of medical images and small datasets,DL models are facing the issues of increased computation cost.In this aspect,this paper presents a deep convolutional neural network with hierarchical spiking neural network(DCNN-HSNN)for medical image classification.The proposed DCNN-HSNN technique aims to detect and classify the existence of diseases using medical images.In addition,region growing segmentation technique is involved to determine the infected regions in the medical image.Moreover,NADAM optimizer with DCNN based Capsule Network(CapsNet)approach is used for feature extraction and derived a collection of feature vectors.Furthermore,the shark smell optimization algorithm(SSA)based HSNN approach is utilized for classification process.In order to validate the better performance of the DCNN-HSNN technique,a wide range of simulations take place against HIS2828 and ISIC2017 datasets.The experimental results highlighted the effectiveness of the DCNN-HSNN technique over the recent techniques interms of different measures.Please type your abstract here.展开更多
Radio frequency fingerprint(RFF)identification is a promising technique for identifying Internet of Things(IoT)devices.This paper presents a comprehensive survey on RFF identification,which covers various aspects rang...Radio frequency fingerprint(RFF)identification is a promising technique for identifying Internet of Things(IoT)devices.This paper presents a comprehensive survey on RFF identification,which covers various aspects ranging from related definitions to details of each stage in the identification process,namely signal preprocessing,RFF feature extraction,further processing,and RFF identification.Specifically,three main steps of preprocessing are summarized,including carrier frequency offset estimation,noise elimination,and channel cancellation.Besides,three kinds of RFFs are categorized,comprising I/Q signal-based,parameter-based,and transformation-based features.Meanwhile,feature fusion and feature dimension reduction are elaborated as two main further processing methods.Furthermore,a novel framework is established from the perspective of closed set and open set problems,and the related state-of-the-art methodologies are investigated,including approaches based on traditional machine learning,deep learning,and generative models.Additionally,we highlight the challenges faced by RFF identification and point out future research trends in this field.展开更多
Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR...Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR)family,comprising highly conserved ligand-gated ion channels,regulates plant growth and development in response to stress.In this study,11 members of the VvGLR gene family in grapes were identified using whole-genome sequence analysis.Bioinformatic methods were employed to analyze the basic physical and chemical properties,phylogenetic trees,conserved domains,motifs,expression patterns,and evolutionary relationships.Phylogenetic and collinear analyses revealed that the VvGLRs were divided into three subgroups,showing the high conservation of the grape GLR family.These members exhibited 2 glutamate receptor binding regions(GABAb and GluR)and 3-4 transmembrane regions(M1,M2,M3,and M4).Real-time quantitative PCR analysis demonstrated the sensitivity of all VvGLRs to low temperature and salt stress.Subsequent localization studies in Nicotiana tabacum verified that VvGLR3.1 and VvGLR3.2 proteins were located on the cell membrane and cell nucleus.Additionally,yeast transformation experiments confirmed the functionality of VvGLR3.1 and VvGLR3.2 in response to low temperature and salt stress.Thesefindings highlight the significant role of the GLR family,a highly conserved group of ion channels,in enhancing grape stress resistance.This study offers new insights into the grape GLR gene family,providing fundamental knowledge for further functional analysis and breeding of stress-resistant grapevines.展开更多
Radio frequency fingerprint identification(RFFI)shows great potential as a means for authenticating wireless devices.As RFFI can be addressed as a classification problem,deep learning techniques are widely utilized in...Radio frequency fingerprint identification(RFFI)shows great potential as a means for authenticating wireless devices.As RFFI can be addressed as a classification problem,deep learning techniques are widely utilized in modern RFFI systems for their outstanding performance.RFFI is suitable for securing the legacy existing Internet of Things(IoT)networks since it does not require any modifications to the existing end-node hardware and communication protocols.However,most deep learning-based RFFI systems require the collection of a great number of labelled signals for training,which is time-consuming and not ideal,especially for the Io T end nodes that are already deployed and configured with long transmission intervals.Moreover,the long time required to train a neural network from scratch also limits rapid deployment on legacy Io T networks.To address the above issues,two transferable RFFI protocols are proposed in this paper leveraging the concept of transfer learning.More specifically,they rely on fine-tuning and distance metric learning,respectively,and only require only a small amount of signals from the legacy IoT network.As the dataset used for transfer is small,we propose to apply augmentation in the transfer process to generate more training signals to improve performance.A Lo Ra-RFFI testbed consisting of 40 commercial-off-the-shelf(COTS)Lo Ra IoT devices and a software-defined radio(SDR)receiver is built to experimentally evaluate the proposed approaches.The experimental results demonstrate that both the fine-tuning and distance metric learning-based RFFI approaches can be rapidly transferred to another Io T network with less than ten signals from each Lo Ra device.The classification accuracy is over 90%,and the augmentation technique can improve the accuracy by up to 20%.展开更多
User Equipment(UE)authentication holds paramount importance in upholding the security of wireless networks.A nascent technology,Radio Frequency Fingerprint Identification(RFFI),is gaining prominence as a means to bols...User Equipment(UE)authentication holds paramount importance in upholding the security of wireless networks.A nascent technology,Radio Frequency Fingerprint Identification(RFFI),is gaining prominence as a means to bolster network security authentication.To expedite the integration of RFFI within fifth-generation(5G)networks,this research undertakes the creation of a comprehensive link-level simulation platform tailored for 5G scenarios.The devised platform emulates various device impairments,including an oscillator,IQ modulator,and power amplifier(PA)nonlinearities,alongside simulating channel distortions.Consequent to this,a plausibility analysis is executed,intertwining transmitter device impairments with 3rd Generation Partnership Project(3GPP)new radio(NR)protocols.Subsequently,an exhaustive exploration is conducted to assess the impact of transmitter impairments,deep neural networks(DNNs),and channel effects on RF fingerprinting performance.Notably,under a signal-to-noise ratio(SNR)of 15 d B,the deep learning approach demonstrates the capability to accurately classify 100 UEs with a commendable 91%accuracy rate.Through a multifaceted evaluation,it is ascertained that the Attention-based network architecture emerges as the optimal choice for the RFFI task,serving as the new benchmark model for RFFI applications.展开更多
The SWEET(sugar will eventually be exported transporter)family proteins are a recently identified class of sugar transporters that are essential for various physiological processes.Although the functions of the SWEET p...The SWEET(sugar will eventually be exported transporter)family proteins are a recently identified class of sugar transporters that are essential for various physiological processes.Although the functions of the SWEET proteins have been identified in a number of species,to date,there have been no reports of the functions of the SWEET genes in woodland strawberries(Fragaria vesca).In this study,we identified 15 genes that were highly homolo-gous to the A.thaliana AtSWEET genes and designated them as FvSWEET1–FvSWEET15.We then conducted a structural and evolutionary analysis of these 15 FvSWEET genes.The phylogenetic analysis enabled us to categor-ize the predicted 15 SWEET proteins into four distinct groups.We observed slight variations in the exon‒intron structures of these genes,while the motifs and domain structures remained highly conserved.Additionally,the developmental and biological stress expression profiles of the 15 FvSWEET genes were extracted and analyzed.Finally,WGCNA coexpression network analysis was run to search for possible interacting genes of FvSWEET genes.The results showed that the FvSWEET10 genes interacted with 20 other genes,playing roles in response to bacterial and fungal infections.The outcomes of this study provide insights into the further study of FvSWEET genes and may also aid in the functional characterization of the FvSWEET genes in woodland strawberries.展开更多
The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scatt...The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.展开更多
This article focuses on the problem of how to accurately calculate the joint control torques when the explosion-proof robot performs collision detection without sensors and gives a complete solution.Nonlinear joint fr...This article focuses on the problem of how to accurately calculate the joint control torques when the explosion-proof robot performs collision detection without sensors and gives a complete solution.Nonlinear joint frictions are incorporated into the dynamic model of a robotic manip-ulator to improve calculation accuracy.A genetic algorithm is used to optimise the excitation trajectories to fully stimulate the robot dynamic characteristics.Effective and applicable data filtering and smoothing methods are proposed and the Iteratively Reweighted Least-Squares method based on the error term is applied to identify the robot dynamic parameters.Compared with Ordinary Least-Squares method,the proposed algorithm improves the accuracy of joint control torques estimation.展开更多
Skin cancer is usually classified as melanoma and non-melanoma.Melanoma now represents 75%of humans passing away worldwide and is one of the most brutal types of cancer.Previously,studies were not mainly focused on fea...Skin cancer is usually classified as melanoma and non-melanoma.Melanoma now represents 75%of humans passing away worldwide and is one of the most brutal types of cancer.Previously,studies were not mainly focused on feature extraction of Melanoma,which caused the classification accuracy.However,in this work,Histograms of orientation gradients and local binary pat-terns feature extraction procedures are used to extract the important features such as asymmetry,symmetry,boundary irregularity,color,diameter,etc.,and are removed from both melanoma and non-melanoma images.This proposed Effi-cient Classification Systems for the Diagnosis of Melanoma(ECSDM)framework consists of different schemes such as preprocessing,segmentation,feature extrac-tion,and classification.We used Machine Learning(ML)and Deep Learning(DL)classifiers in the classification framework.The ML classifier is Naïve Bayes(NB)and Support Vector Machines(SVM).And also,DL classification frame-work of the Convolution Neural Network(CNN)is used to classify the melanoma and benign images.The results show that the Neural Network(NNET)classifier’achieves 97.17%of accuracy when contrasting with ML classifiers.展开更多
The thermostability of some proteins in weak cation-exchange chromatography was investigated at 20-80 ℃. The results show that there is a fixed thermal denaturation transition temperature for each protein. The appear...The thermostability of some proteins in weak cation-exchange chromatography was investigated at 20-80 ℃. The results show that there is a fixed thermal denaturation transition temperature for each protein. The appearance of the thermal transition temperature indicates that the conformations of the proteins are destroyed seriously. The thermal behavior of the proteins in weak cation-exchange and hydrophobic interaction chromatographies were compared in a wide temperature range. It was found that the proteins have a higher thermostability in a weak cation-exchange chromatography system. The thermodynamic parameters(Δ H 0, Δ S 0) of those proteins were determined by means of Vant Hoff relationship(ln k -1/ T ). According to standard entropy change(Δ S 0), the conformational change of the proteins was judged in the chromatographic process. The linear relationships between Δ H 0 and Δ S 0 can be used to evaluate 'compensation temperature'( β ) at the protein denaturation and identify the identity of the protein retention mechanism in weak cation-exchange chromatography.展开更多
The development of facial recognition technology has become an increasingly powerful tool in wild animal indi-vidual recognition.In this paper,we develop an automatic detection and recognition method with the combinat...The development of facial recognition technology has become an increasingly powerful tool in wild animal indi-vidual recognition.In this paper,we develop an automatic detection and recognition method with the combinations of body features of big cats based on the deep convolutional neural network(CNN).We collected dataset including 12244 images from 47 individual Amur tigers(Panthera tigris altaica)at the Siberian Tiger Park by mobile phones and digital camera and 1940 images and videos of 12 individual wild Amur leopard(Panthera pardus orientalis)by infrared cameras.First,the single shot multibox detector algorithm is used to perform the automatic detection process of feature regions in each image.For the different feature regions of the image,like face stripe or spots,CNNs and multi-layer perceptron models were applied to automatically identify tiger and leopard individuals,in-dependently.Our results show that the identification accuracy of Amur tiger can reach up to 93.27%for face front,93.33%for right body stripe,and 93.46%for left body stripe.Furthermore,the combination of right face,left body stripe,and right body stripe achieves the highest accuracy rate,up to 95.55%.Consequently,the combination of different body parts can improve the individual identification accuracy.However,it is not the higher the number of body parts,the higher the accuracy rate.The combination model with 3 body parts has the highest accuracy.The identification accuracy of Amur leopard can reach up to 86.90%for face front,89.13%for left body spots,and 88.33%for right body spots.The accuracy of different body parts combination is lower than the independent part.For wild Amur leopard,the combination of face with body spot part is not helpful for the improvement of identification accuracy.The most effective identification part is still the independent left or right body spot part.It can be applied in long-term monitoring of big cats,including big data analysis for animal behavior,and be helpful for the individual identification of other wildlife species.展开更多
In many problems,to analyze the process/metabolism behavior,a mod-el of the system is identified.The main gap is the weakness of current methods vs.noisy environments.The primary objective of this study is to present a...In many problems,to analyze the process/metabolism behavior,a mod-el of the system is identified.The main gap is the weakness of current methods vs.noisy environments.The primary objective of this study is to present a more robust method against uncertainties.This paper proposes a new deep learning scheme for modeling and identification applications.The suggested approach is based on non-singleton type-3 fuzzy logic systems(NT3-FLSs)that can support measurement errors and high-level uncertainties.Besides the rule optimization,the antecedent parameters and the level of secondary memberships are also adjusted by the suggested square root cubature Kalmanfilter(SCKF).In the learn-ing algorithm,the presented NT3-FLSs are deeply learned,and their nonlinear structure is preserved.The designed scheme is applied for modeling carbon cap-ture and sequestration problem using real-world data sets.Through various ana-lyses and comparisons,the better efficiency of the proposed fuzzy modeling scheme is verified.The main advantages of the suggested approach include better resistance against uncertainties,deep learning,and good convergence.展开更多
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金supported by Key Scientific and Technological Grant of Zhejiang for Breeding New Agricultural Varieties(2021C02072-6)the Natural Science Foundation of Anhui Provincial Education Department(KJ2019A0574).
文摘To provide a scientific basis for controlling mulberry bacterial blight in Bazhong,Sichuan,China(BSC),this study aimed to isolate and purify pathogenic bacteria from diseased branches of mulberry trees in the region and to clarify their taxonomic status using morphological observation,physiological and biochemical detection,molecular-level identification,and the construction of a phylogenetic tree.A total of 218 bacterial strains were isolated from samples of diseased mulberry branches.Of these,7 strains were identified as pathogenic bacteria based on pathogenicity tests conducted in accordance with Koch’s postulates.Preliminary findings from the analysis of the 16S rRNA sequence indicated that the 7 pathogenic bacteria are members of Klebsiella spp.Morphological observation revealed that the pathogenic bacteria were oval-shaped and had capsules but no spores.They could secrete pectinase,cellulase,and protease and were able to utilize D-glucose,D-mannose,D-maltose,and D-Cellobiose.The 7 strains of pathogenic bacteria exhibited the highest homology with Klebsiella oxytoca.This study identifies Klebsiella oxytoca as the causative agent of mulberry bacterial blight in BSC,laying the foundation for the prevention and control of this pathogen and further investigation into its pathogenic mechanism.
基金supported by the Chief Scientist Program of Qinghai Province(2024-SF-101).
文摘Perennial grasses have developed intricate mechanisms to adapt to diverse environments,enabling their resistance to various biotic and abiotic stressors.These mechanisms arise from strong natural selection that contributes to enhancing the adaptation of forage plants to various stress conditions.Methods such as antisense RNA technology,CRISPR/Cas9 screening,virus-induced gene silencing,and transgenic technology,are commonly utilized for investigating the stress response functionalities of grass genes in both warm-season and cool-season varieties.This review focuses on the functional identification of stress-resistance genes and regulatory elements in grasses.It synthesizes recent studies on mining functional genes,regulatory genes,and protein kinase-like signaling factors involved in stress responses in grasses.Additionally,the review outlines future research directions,providing theoretical support and references for further exploration of(i)molecular mechanisms underlying grass stress responses,(ii)cultivation and domestication of herbage,(iii)development of high-yield varieties resistant to stress,and(iv)mechanisms and breeding strategies for stress resistance in grasses.
基金Gansu Science and Technology Key Project under Grant No.2GS057-A52-008
文摘Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the damping ratio and damage.In this study,methods based on the Hilbert-Huang transform(HHT) are investigated for structural modal parameter identifi cation and damage diagnosis.First,mirror extension and prediction via a radial basis function(RBF) neural network are used to restrain the troublesome end-effect issue in empirical mode decomposition(EMD),which is a crucial part of HHT.Then,the approaches based on HHT combined with other techniques,such as the random decrement technique(RDT),natural excitation technique(NExT) and stochastic subspace identifi cation(SSI),are proposed to identify modal parameters of structures.Furthermore,a damage diagnosis method based on the HHT is also proposed.Time-varying instantaneous frequency and instantaneous energy are used to identify the damage evolution of the structure.The relative amplitude of the Hilbert marginal spectrum is used to identify the damage location of the structure.Finally,acceleration records at gauge points from shaking table testing of a 12-story reinforced concrete frame model are taken to validate the proposed approaches.The results show that the proposed approaches based on HHT for modal parameter identifi cation and damage diagnosis are reliable and practical.
基金supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education(No.2020R1I1A3068274),Received by Junho Ahn.https://www.nrf.re.kr/supported by the Korea Agency for Infrastructure Technology Advancement(KAIA)by the Ministry of Land,Infrastructure and Transport under Grant(No.22QPWO-C152223-04),Received by Chulsu Kim.https://www.kaia.re.kr/.
文摘Existingfirefighting robots are focused on simple storage orfire sup-pression outside buildings rather than detection or recognition.Utilizing a large number of robots using expensive equipment is challenging.This study aims to increase the efficiency of search and rescue operations and the safety offirefigh-ters by detecting and identifying the disaster site by recognizing collapsed areas,obstacles,and rescuers on-site.A fusion algorithm combining a camera and three-dimension light detection and ranging(3D LiDAR)is proposed to detect and loca-lize the interiors of disaster sites.The algorithm detects obstacles by analyzingfloor segmentation and edge patterns using a mask regional convolutional neural network(mask R-CNN)features model based on the visual data collected from a parallelly connected camera and 3D LiDAR.People as objects are detected using you only look once version 4(YOLOv4)in the image data to localize persons requiring rescue.The point cloud data based on 3D LiDAR cluster the objects using the density-based spatial clustering of applications with noise(DBSCAN)clustering algorithm and estimate the distance to the actual object using the center point of the clustering result.The proposed artificial intelligence(AI)algorithm was verified based on individual sensors using a sensor-mounted robot in an actual building to detectfloor surfaces,atypical obstacles,and persons requiring rescue.Accordingly,the fused AI algorithm was comparatively verified.
文摘The global pandemic of novel coronavirus that started in 2019 has ser-iously affected daily lives and placed everyone in a panic condition.Widespread coronavirus led to the adoption of social distancing and people avoiding unneces-sary physical contact with each other.The present situation advocates the require-ment of a contactless biometric system that could be used in future authentication systems which makesfingerprint-based person identification ineffective.Periocu-lar biometric is the solution because it does not require physical contact and is able to identify people wearing face masks.However,the periocular biometric region is a small area,and extraction of the required feature is the point of con-cern.This paper has proposed adopted multiple features and emphasis on the periocular region.In the proposed approach,combination of local binary pattern(LBP),color histogram and features in frequency domain have been used with deep learning algorithms for classification.Hence,we extract three types of fea-tures for the classification of periocular regions for biometric.The LBP represents the textual features of the iris while the color histogram represents the frequencies of pixel values in the RGB channel.In order to extract the frequency domain fea-tures,the wavelet transformation is obtained.By learning from these features,a convolutional neural network(CNN)becomes able to discriminate the features and can provide better recognition results.The proposed approach achieved the highest accuracy rates with the lowest false person identification.
基金Taif University Researchers Supporting Project Number(TURSP-2020/161)Taif University,Taif,Saudi Arabia.
文摘The recently developed machine learning(ML)models have the ability to obtain high detection rate using biomedical signals.Therefore,this article develops an Optimal Sparse Autoencoder based Sleep Stage Classification Model on Electroencephalography(EEG)Biomedical Signals,named OSAE-SSCEEG technique.The major intention of the OSAE-SSCEEG technique is tofind the sleep stage disorders using the EEG biomedical signals.The OSAE-SSCEEG technique primarily undergoes preprocessing using min-max data normalization approach.Moreover,the classification of sleep stages takes place using the Sparse Autoencoder with Smoothed Regularization(SAE-SR)with softmax(SM)approach.Finally,the parameter optimization of the SAE-SR technique is carried out by the use of Coyote Optimization Algorithm(COA)and it leads to boosted classification efficiency.In order to ensure the enhanced performance of the OSAE-SSCEEG technique,a wide ranging simulation analysis is performed and the obtained results demonstrate the betterment of the OSAE-SSCEEG tech-nique over the recent methods.
文摘Medical image classification becomes a vital part of the design of computer aided diagnosis(CAD)models.The conventional CAD models are majorly dependent upon the shapes,colors,and/or textures that are problem oriented and exhibited complementary in medical images.The recently developed deep learning(DL)approaches pave an efficient method of constructing dedicated models for classification problems.But the maximum resolution of medical images and small datasets,DL models are facing the issues of increased computation cost.In this aspect,this paper presents a deep convolutional neural network with hierarchical spiking neural network(DCNN-HSNN)for medical image classification.The proposed DCNN-HSNN technique aims to detect and classify the existence of diseases using medical images.In addition,region growing segmentation technique is involved to determine the infected regions in the medical image.Moreover,NADAM optimizer with DCNN based Capsule Network(CapsNet)approach is used for feature extraction and derived a collection of feature vectors.Furthermore,the shark smell optimization algorithm(SSA)based HSNN approach is utilized for classification process.In order to validate the better performance of the DCNN-HSNN technique,a wide range of simulations take place against HIS2828 and ISIC2017 datasets.The experimental results highlighted the effectiveness of the DCNN-HSNN technique over the recent techniques interms of different measures.Please type your abstract here.
基金supported in part by the National Natural Science Foundation of China under Grant 62171120 and 62001106National Key Research and Development Program of China(2020YFE0200600)+2 种基金Jiangsu Provincial Key Laboratory of Network and Information Security No.BM2003201Guangdong Key Research and Development Program under Grant2020B0303010001Purple Mountain Laboratories for Network and Communication Security
文摘Radio frequency fingerprint(RFF)identification is a promising technique for identifying Internet of Things(IoT)devices.This paper presents a comprehensive survey on RFF identification,which covers various aspects ranging from related definitions to details of each stage in the identification process,namely signal preprocessing,RFF feature extraction,further processing,and RFF identification.Specifically,three main steps of preprocessing are summarized,including carrier frequency offset estimation,noise elimination,and channel cancellation.Besides,three kinds of RFFs are categorized,comprising I/Q signal-based,parameter-based,and transformation-based features.Meanwhile,feature fusion and feature dimension reduction are elaborated as two main further processing methods.Furthermore,a novel framework is established from the perspective of closed set and open set problems,and the related state-of-the-art methodologies are investigated,including approaches based on traditional machine learning,deep learning,and generative models.Additionally,we highlight the challenges faced by RFF identification and point out future research trends in this field.
基金This research was funded by the Natural Science Foundation of Shandong Province of China(ZR2022MC144).
文摘Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR)family,comprising highly conserved ligand-gated ion channels,regulates plant growth and development in response to stress.In this study,11 members of the VvGLR gene family in grapes were identified using whole-genome sequence analysis.Bioinformatic methods were employed to analyze the basic physical and chemical properties,phylogenetic trees,conserved domains,motifs,expression patterns,and evolutionary relationships.Phylogenetic and collinear analyses revealed that the VvGLRs were divided into three subgroups,showing the high conservation of the grape GLR family.These members exhibited 2 glutamate receptor binding regions(GABAb and GluR)and 3-4 transmembrane regions(M1,M2,M3,and M4).Real-time quantitative PCR analysis demonstrated the sensitivity of all VvGLRs to low temperature and salt stress.Subsequent localization studies in Nicotiana tabacum verified that VvGLR3.1 and VvGLR3.2 proteins were located on the cell membrane and cell nucleus.Additionally,yeast transformation experiments confirmed the functionality of VvGLR3.1 and VvGLR3.2 in response to low temperature and salt stress.Thesefindings highlight the significant role of the GLR family,a highly conserved group of ion channels,in enhancing grape stress resistance.This study offers new insights into the grape GLR gene family,providing fundamental knowledge for further functional analysis and breeding of stress-resistant grapevines.
基金in part supported by UK Engineering and Physical Sciences Research Council under grant ID EP/V027697/1in part by the National Key Research and Development Program of China under grant ID 2020YFE0200600
文摘Radio frequency fingerprint identification(RFFI)shows great potential as a means for authenticating wireless devices.As RFFI can be addressed as a classification problem,deep learning techniques are widely utilized in modern RFFI systems for their outstanding performance.RFFI is suitable for securing the legacy existing Internet of Things(IoT)networks since it does not require any modifications to the existing end-node hardware and communication protocols.However,most deep learning-based RFFI systems require the collection of a great number of labelled signals for training,which is time-consuming and not ideal,especially for the Io T end nodes that are already deployed and configured with long transmission intervals.Moreover,the long time required to train a neural network from scratch also limits rapid deployment on legacy Io T networks.To address the above issues,two transferable RFFI protocols are proposed in this paper leveraging the concept of transfer learning.More specifically,they rely on fine-tuning and distance metric learning,respectively,and only require only a small amount of signals from the legacy IoT network.As the dataset used for transfer is small,we propose to apply augmentation in the transfer process to generate more training signals to improve performance.A Lo Ra-RFFI testbed consisting of 40 commercial-off-the-shelf(COTS)Lo Ra IoT devices and a software-defined radio(SDR)receiver is built to experimentally evaluate the proposed approaches.The experimental results demonstrate that both the fine-tuning and distance metric learning-based RFFI approaches can be rapidly transferred to another Io T network with less than ten signals from each Lo Ra device.The classification accuracy is over 90%,and the augmentation technique can improve the accuracy by up to 20%.
基金supported by the National Natural Science Foundation of China(No:62201172)the National Key Research and Development Program of China(2022YFE0136800)
文摘User Equipment(UE)authentication holds paramount importance in upholding the security of wireless networks.A nascent technology,Radio Frequency Fingerprint Identification(RFFI),is gaining prominence as a means to bolster network security authentication.To expedite the integration of RFFI within fifth-generation(5G)networks,this research undertakes the creation of a comprehensive link-level simulation platform tailored for 5G scenarios.The devised platform emulates various device impairments,including an oscillator,IQ modulator,and power amplifier(PA)nonlinearities,alongside simulating channel distortions.Consequent to this,a plausibility analysis is executed,intertwining transmitter device impairments with 3rd Generation Partnership Project(3GPP)new radio(NR)protocols.Subsequently,an exhaustive exploration is conducted to assess the impact of transmitter impairments,deep neural networks(DNNs),and channel effects on RF fingerprinting performance.Notably,under a signal-to-noise ratio(SNR)of 15 d B,the deep learning approach demonstrates the capability to accurately classify 100 UEs with a commendable 91%accuracy rate.Through a multifaceted evaluation,it is ascertained that the Attention-based network architecture emerges as the optimal choice for the RFFI task,serving as the new benchmark model for RFFI applications.
基金funded by the Fujian Provincial Science and Technology Project(2021N5014,2022N5006)the Key Research Project of the Putian Science and Technology Bureau(2021ZP08,2021ZP09,2021ZP10,2021ZP11,2023GJGZ001).
文摘The SWEET(sugar will eventually be exported transporter)family proteins are a recently identified class of sugar transporters that are essential for various physiological processes.Although the functions of the SWEET proteins have been identified in a number of species,to date,there have been no reports of the functions of the SWEET genes in woodland strawberries(Fragaria vesca).In this study,we identified 15 genes that were highly homolo-gous to the A.thaliana AtSWEET genes and designated them as FvSWEET1–FvSWEET15.We then conducted a structural and evolutionary analysis of these 15 FvSWEET genes.The phylogenetic analysis enabled us to categor-ize the predicted 15 SWEET proteins into four distinct groups.We observed slight variations in the exon‒intron structures of these genes,while the motifs and domain structures remained highly conserved.Additionally,the developmental and biological stress expression profiles of the 15 FvSWEET genes were extracted and analyzed.Finally,WGCNA coexpression network analysis was run to search for possible interacting genes of FvSWEET genes.The results showed that the FvSWEET10 genes interacted with 20 other genes,playing roles in response to bacterial and fungal infections.The outcomes of this study provide insights into the further study of FvSWEET genes and may also aid in the functional characterization of the FvSWEET genes in woodland strawberries.
基金supported by the National Key Research and Development Program of China(No.2018YFA0702800)the National Natural Science Foundation of China(No.12072056)supported by National Defense Fundamental Scientific Research Project(XXXX2018204BXXX).
文摘The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.
基金supported by the National Key Research and Development Program:[Grant Number 2018YFB1305700].
文摘This article focuses on the problem of how to accurately calculate the joint control torques when the explosion-proof robot performs collision detection without sensors and gives a complete solution.Nonlinear joint frictions are incorporated into the dynamic model of a robotic manip-ulator to improve calculation accuracy.A genetic algorithm is used to optimise the excitation trajectories to fully stimulate the robot dynamic characteristics.Effective and applicable data filtering and smoothing methods are proposed and the Iteratively Reweighted Least-Squares method based on the error term is applied to identify the robot dynamic parameters.Compared with Ordinary Least-Squares method,the proposed algorithm improves the accuracy of joint control torques estimation.
文摘Skin cancer is usually classified as melanoma and non-melanoma.Melanoma now represents 75%of humans passing away worldwide and is one of the most brutal types of cancer.Previously,studies were not mainly focused on feature extraction of Melanoma,which caused the classification accuracy.However,in this work,Histograms of orientation gradients and local binary pat-terns feature extraction procedures are used to extract the important features such as asymmetry,symmetry,boundary irregularity,color,diameter,etc.,and are removed from both melanoma and non-melanoma images.This proposed Effi-cient Classification Systems for the Diagnosis of Melanoma(ECSDM)framework consists of different schemes such as preprocessing,segmentation,feature extrac-tion,and classification.We used Machine Learning(ML)and Deep Learning(DL)classifiers in the classification framework.The ML classifier is Naïve Bayes(NB)and Support Vector Machines(SVM).And also,DL classification frame-work of the Convolution Neural Network(CNN)is used to classify the melanoma and benign images.The results show that the Neural Network(NNET)classifier’achieves 97.17%of accuracy when contrasting with ML classifiers.
基金Supported by Shaan xi Provincial Scientific- Comm ittee( 96 H0 9)
文摘The thermostability of some proteins in weak cation-exchange chromatography was investigated at 20-80 ℃. The results show that there is a fixed thermal denaturation transition temperature for each protein. The appearance of the thermal transition temperature indicates that the conformations of the proteins are destroyed seriously. The thermal behavior of the proteins in weak cation-exchange and hydrophobic interaction chromatographies were compared in a wide temperature range. It was found that the proteins have a higher thermostability in a weak cation-exchange chromatography system. The thermodynamic parameters(Δ H 0, Δ S 0) of those proteins were determined by means of Vant Hoff relationship(ln k -1/ T ). According to standard entropy change(Δ S 0), the conformational change of the proteins was judged in the chromatographic process. The linear relationships between Δ H 0 and Δ S 0 can be used to evaluate 'compensation temperature'( β ) at the protein denaturation and identify the identity of the protein retention mechanism in weak cation-exchange chromatography.
基金funded by the Fundamental Research Funds for the Central Universities(2572020BC05)the Heilongjiang postdoctoral fund project(LBH-Z18003)+3 种基金the Biodiversity Survey,Monitoring and Assessment Project of Ministry of Ecology and Environment,China(2019HB2096001006)the National Natural Science Foundation of China(NSFC 31872241)the Individual Identification Technological Research on Cameratrapping images of Amur tigers(NFGA 2017)National Innovation and Entrepreneurship Training Program for College Student(S202010225022).
文摘The development of facial recognition technology has become an increasingly powerful tool in wild animal indi-vidual recognition.In this paper,we develop an automatic detection and recognition method with the combinations of body features of big cats based on the deep convolutional neural network(CNN).We collected dataset including 12244 images from 47 individual Amur tigers(Panthera tigris altaica)at the Siberian Tiger Park by mobile phones and digital camera and 1940 images and videos of 12 individual wild Amur leopard(Panthera pardus orientalis)by infrared cameras.First,the single shot multibox detector algorithm is used to perform the automatic detection process of feature regions in each image.For the different feature regions of the image,like face stripe or spots,CNNs and multi-layer perceptron models were applied to automatically identify tiger and leopard individuals,in-dependently.Our results show that the identification accuracy of Amur tiger can reach up to 93.27%for face front,93.33%for right body stripe,and 93.46%for left body stripe.Furthermore,the combination of right face,left body stripe,and right body stripe achieves the highest accuracy rate,up to 95.55%.Consequently,the combination of different body parts can improve the individual identification accuracy.However,it is not the higher the number of body parts,the higher the accuracy rate.The combination model with 3 body parts has the highest accuracy.The identification accuracy of Amur leopard can reach up to 86.90%for face front,89.13%for left body spots,and 88.33%for right body spots.The accuracy of different body parts combination is lower than the independent part.For wild Amur leopard,the combination of face with body spot part is not helpful for the improvement of identification accuracy.The most effective identification part is still the independent left or right body spot part.It can be applied in long-term monitoring of big cats,including big data analysis for animal behavior,and be helpful for the individual identification of other wildlife species.
基金supported by the project of the National Social Science Fundation(21BJL052,20BJY020,20BJL127,19BJY090)the 2018 Fujian Social Science Planning Project(FJ2018B067)The Planning Fund Project of Humanities and Social Sciences Research of the Ministry of Education in 2019(19YJA790102),The grant has been received by Aoqi Xu.
文摘In many problems,to analyze the process/metabolism behavior,a mod-el of the system is identified.The main gap is the weakness of current methods vs.noisy environments.The primary objective of this study is to present a more robust method against uncertainties.This paper proposes a new deep learning scheme for modeling and identification applications.The suggested approach is based on non-singleton type-3 fuzzy logic systems(NT3-FLSs)that can support measurement errors and high-level uncertainties.Besides the rule optimization,the antecedent parameters and the level of secondary memberships are also adjusted by the suggested square root cubature Kalmanfilter(SCKF).In the learn-ing algorithm,the presented NT3-FLSs are deeply learned,and their nonlinear structure is preserved.The designed scheme is applied for modeling carbon cap-ture and sequestration problem using real-world data sets.Through various ana-lyses and comparisons,the better efficiency of the proposed fuzzy modeling scheme is verified.The main advantages of the suggested approach include better resistance against uncertainties,deep learning,and good convergence.