The traditional genetic algorithm(GA)has unstable inversion results and is easy to fall into the local optimum when inverting fault parameters.Therefore,this article considers the combination of GA with other non-line...The traditional genetic algorithm(GA)has unstable inversion results and is easy to fall into the local optimum when inverting fault parameters.Therefore,this article considers the combination of GA with other non-linear algorithms in order to improve the inversion precision of GA.This paper proposes a genetic Nelder-Mead neural network algorithm(GNMNNA).This algorithm uses a neural network algorithm(NNA)to optimize the global search ability of GA.At the same time,the simplex algorithm is used to optimize the local search capability of the GA.Through numerical examples,the stability of the inversion algorithm under different strategies is explored.The experimental results show that the proposed GNMNNA has stronger inversion stability and higher precision compared with the existing algorithms.The effectiveness of GNMNNA is verified by the BodrumeKos earthquake and Monte Cristo Range earthquake.The experimental results show that GNMNNA is superior to GA and NNA in both inversion precision and computational stability.Therefore,GNMNNA has greater application potential in complex earthquake environment.展开更多
Each reflection return of a bridge over water is displayed as wide stripe in a high-resolution synthetic aperture radar (SAR) image, which lead to difficulties in a parameter inversion. Therefore, a method of bridge...Each reflection return of a bridge over water is displayed as wide stripe in a high-resolution synthetic aperture radar (SAR) image, which lead to difficulties in a parameter inversion. Therefore, a method of bridge parameter inversion is proposed for high-resolution full polarimetric SAR (PolSAR). First, the single, double and triple- bounce returns from each component of the bridge are distinguished by the polarization scattering features. Then the reasons which lead to the backscatter echoes oft_he bridge over water being displayed as stripes are analyzed, using a principle of microwave reflection, as well as an extraction method for each reflection return, and a parameter retrieval method is obtained. Finally, the parameters of the bridge, including the height (top and bottom surfaces of the sea bridge), width, thickness, span, and height of the bridge tower, are retrieved using full polarimetric AIRSAR data. When a comparison of the measured data is completed, the results indicate that the proposed method can invert the parameters with a high accuracy, and that the inversion error of the bridge height (bottom surface) is only 1.3%. Moreover, the results also show that for the high-resolution SAR, the C and L-band images have the same ability in regards to parameter retrieval.展开更多
With a more complex pore structure system compared with clastic rocks, carbonate rocks have not yet been well described by existing conventional rock physical models concerning the pore structure vagary as well as the...With a more complex pore structure system compared with clastic rocks, carbonate rocks have not yet been well described by existing conventional rock physical models concerning the pore structure vagary as well as the influence on elastic rock properties. We start with a discussion and an analysis about carbonate rock pore structure utilizing rock slices. Then, given appropriate assumptions, we introduce a new approach to modeling carbonate rocks and construct a pore structure algorithm to identify pore structure mutation with a basis on the Gassmann equation and the Eshelby-Walsh ellipsoid inclusion crack theory. Finally, we compute a single well's porosity using this new approach with full wave log data and make a comparison with the predicted result of traditional method and simultaneously invert for reservoir parameters. The study results reveal that the rock pore structure can significantly influence the rocks' elastic properties and the predicted porosity error of the new modeling approach is merely 0.74%. Therefore, the approach we introduce can effectively decrease the predicted error of reservoir parameters.展开更多
A topographic parameter inversion method based on laser altimetry is developed in this paper, which can be used to deduce the surface vertical profile and retrieve the topographic parameters within the laser footprint...A topographic parameter inversion method based on laser altimetry is developed in this paper, which can be used to deduce the surface vertical profile and retrieve the topographic parameters within the laser footprints by analyzing and simulating return waveforms. This method comprises three steps. The first step is to build the numerical models for the whole measuring procedure of laser altimetry, construct digital elevation models for surfaces with different topographic parameters, and calculate return waveforms. The second step is to analyze the simulated return waveforms to obtain their characteristics parameters, summarize the effects of the topographic parameter variations on the characteristic parameters of simulated return waveforms, and analyze the observed return waveforms of laser altimeters to acquire their characteristic parameters at the same time. The last step is to match the characteristic parameters of the simulated and observed return waveforms, and deduce the topographic parameters within the laser footprint. This method can be used to retrieve the topographic parameters within the laser footprint from the observed return waveforms of spaceborne laser altimeters and to get knowledge about the surface altitude distribution within the laser footprint other than only getting the height of the surface encountered firstly by the laser beam, which extends laser altimeters' function and makes them more like radars.展开更多
In Recent years,seismic data have been widely used in seismic oceanography for the inversion of oceanic parameters represented by conductivity temperature depth(CTD).Using this technique,researchers can identify the w...In Recent years,seismic data have been widely used in seismic oceanography for the inversion of oceanic parameters represented by conductivity temperature depth(CTD).Using this technique,researchers can identify the water structure with high horizontal resolution,which compensates for the deficiencies of CTD data.However,conventional inversion methods are modeldriven,such as constrained sparse spike inversion(CSSI)and full waveform inversion(FWI),and typically require prior deterministic mapping operators.In this paper,we propose a novel inversion method based on a convolutional neural network(CNN),which is purely data-driven.To solve the problem of multiple solutions,we use stepwise regression to select the optimal attributes and their combination and take two-dimensional images of the selected attributes as input data.To prevent vanishing gradients,we use the rectified linear unit(ReLU)function as the activation function of the hidden layer.Moreover,the Adam and mini-batch algorithms are combined to improve stability and efficiency.The inversion results of field data indicate that the proposed method is a robust tool for accurately predicting oceanic parameters.展开更多
The dispersion characteristics of shallow water can be described by the dispersion curves,which contain substantial ocean parameter information.A fast ocean parameter inversion method based on dispersion curves with a...The dispersion characteristics of shallow water can be described by the dispersion curves,which contain substantial ocean parameter information.A fast ocean parameter inversion method based on dispersion curves with a single hydrophone is presented in this paper.The method is achieved through Bayesian theory.Several sets of dispersion curves extracted from measured data are used as the input function.The inversion is performed by matching a replica calculated with a dispersion formula.The bottom characteristics can be described by the bottom reflection phase shift parameter P.The propagation range and the depth can be inverted quickly when the seabed parameters are represented by on parameter P.The inversion results improve the inversion efficiency of the seabed parameters.Consequently,the inversion efficiency and accuracy are improved while the number of inversion parameters is decreased and the computational speed of replica is increased.The inversion results have lower error than the reference values,and the dispersion curves calculated with inversion parameters are also in good agreement with extracted curves from measured data;thus,the effectiveness of the inversion method is demonstrated.展开更多
The multi- layers feedforward neural network is used for inversion ofmaterial constants of fluid-saturated porous media. The direct analysis of fluid-saturated porousmedia is carried out with the boundary element meth...The multi- layers feedforward neural network is used for inversion ofmaterial constants of fluid-saturated porous media. The direct analysis of fluid-saturated porousmedia is carried out with the boundary element method. The dynamic displacement responses obtainedfrom direct analysis for prescribed material parameters constitute the sample sets training neuralnetwork. By virtue of the effective L-M training algorithm and the Tikhonov regularization method aswell as the GCV method for an appropriate selection of regu-larization parameter, the inversemapping from dynamic displacement responses to material constants is performed. Numerical examplesdemonstrate the validity of the neural network method.展开更多
For density inversion of gravity anomaly data, once the inversion method is determined, the main factors affecting the inversion result are the inversion parameters and subdivision scheme. A set of reasonable inversio...For density inversion of gravity anomaly data, once the inversion method is determined, the main factors affecting the inversion result are the inversion parameters and subdivision scheme. A set of reasonable inversion parameters and subdivision scheme can, not only improve the inversion process efficiency, but also ensure inversion result accuracy. The gravity inversion method based on correlation searching and the golden section algorithm is an effective potential field inversion method. It can be used to invert 2D and 3D physical properties with potential data observed on flat or rough surfaces. In this paper, we introduce in detail the density inversion principles based on correlation searching and the golden section algorithm. Considering that the gold section algorithm is not globally optimized. we present a heuristic method to ensure the inversion result is globally optimized. With a series of model tests, we systematically compare and analyze the inversion result efficiency and accuracy with different parameters. Based on the model test results, we conclude the selection principles for each inversion parameter with which the inversion accuracy can be obviously improved.展开更多
Cauchy priori distribution-based Bayesian AVO reflectivity inversion may lead to sparse estimates that are sensitive to large reflectivities. For the inversion, the computation of the covariance matrix and regularized...Cauchy priori distribution-based Bayesian AVO reflectivity inversion may lead to sparse estimates that are sensitive to large reflectivities. For the inversion, the computation of the covariance matrix and regularized terms requires prior estimation of model parameters, which makes the iterative inversion weakly nonlinear. At the same time, the relations among the model parameters are assumed linear. Furthermore, the reflectivities, the results of the inversion, or the elastic parameters with cumulative error recovered by integrating reflectivities are not well suited for detecting hydrocarbons and fuids. In contrast, in Bayesian linear AVO inversion, the elastic parameters can be directly extracted from prestack seismic data without linear assumptions for the model parameters. Considering the advantages of the abovementioned methods, the Bayesian AVO reflectivity inversion process is modified and Cauchy distribution is explored as a prior probability distribution and the time-variant covariance is also considered. Finally, we propose a new method for the weakly nonlinear AVO waveform inversion. Furthermore, the linear assumptions are abandoned and elastic parameters, such as P-wave velocity, S-wave velocity, and density, can be directly recovered from seismic data especially for interfaces with large reflectivities. Numerical analysis demonstrates that all the elastic parameters can be estimated from prestack seismic data even when the signal-to-noise ratio of the seismic data is low.展开更多
Bottom acoustic parameters play an important role in sound field prediction. Acoustic parameters in deep water are not well understood. Bottom acoustic parameters are sensitive to the transmission-loss (TL) data in ...Bottom acoustic parameters play an important role in sound field prediction. Acoustic parameters in deep water are not well understood. Bottom acoustic parameters are sensitive to the transmission-loss (TL) data in the shadow zone of deep water. We propose a multiple-step fill inversion method to invert sound speed, density and attenuation in deep water. Based on a uniform liquid hMf-space bottom model, sound speed of the bottom is inverted by using the long range TL at low frequency obtained in an acoustic propagation experiment conducted in the South China Sea (SCS) in summer 2014. Meanwhile, bottom density is estimated combining with the Hamilton sediment empirical relationship. Attenuation coefficients at different frequencies are then estimated from the TL data in the shadow zones by using the known sound speed and density as a constraint condition. The nonlinear relationship between attenuation coefficient and frequency is given in the end. Tile inverted bottom parameters can be used to forecast the transmission loss in the deep water area of SCS very we//.展开更多
The use of geodetic observation data for seismic fault parameters inversion is the research hotspot of geodetic inversion, and it is also the focus of studying the mechanism of earthquake occurrence. Seismic fault par...The use of geodetic observation data for seismic fault parameters inversion is the research hotspot of geodetic inversion, and it is also the focus of studying the mechanism of earthquake occurrence. Seismic fault parameters inversion has nonlinear characteristics, and the gradient-based optimizer(GBO) has the characteristics of fast convergence speed and falling into local optimum hardly. This paper applies GBO algorithm to simulated earthquakes and real LuShan earthquakes in the nonlinear inversion of the Okada model to obtain the source parameters. The simulated earthquake experiment results show that the algorithm is stable, and the seismic source parameters obtained by GBO are slightly closer to the true value than the multi peak particle swarm optimization(MPSO). In the 2013 LuShan earthquake experiment, the root mean square error between the deformation after forwarding of fault parameters obtained by the introduced GBO algorithm and the surface observation deformation was 3.703 mm, slightly better than 3.708 mm calculated by the MPSO. Moreover, the inversion result of GBO algorithm is better than MPSO algorithm in stability. The above results show that the introduced GBO algorithm has a certain practical application value in seismic fault source parameters inversion.展开更多
We develop a new approach to estimating bottom parameters based on the Bayesian theory in deep ocean. The solution in a Bayesian inversion is characterized by its posterior probability density (PPD), which combines ...We develop a new approach to estimating bottom parameters based on the Bayesian theory in deep ocean. The solution in a Bayesian inversion is characterized by its posterior probability density (PPD), which combines prior information about the model with information from an observed data set. Bottom parameters are sensitive to the transmission loss (TL) data in shadow zones of deep ocean. In this study, TLs of different frequencies from the South China Sea in the summer of 2014 are used as the observed data sets. The interpretation of the multidimensional PPD requires the calculation of its moments, such as the mean, covariance, and marginal distributions, which provide parameter estimates and uncertainties. Considering that the sensitivities of shallow- zone TLs vary for different frequencies of the bottom parameters in the deep ocean, this research obtains bottom parameters at varying frequencies. Then, the inversion results are compared with the sampling data and the correlations between bottom parameters are determined. Furthermore, we show the inversion results for multi- frequency combined inversion. The inversion results are verified by the experimental TLs and the numerical results, which are calculated using the inverted bottom parameters for different source depths and receiver depths at the corresponding frequency.展开更多
A method for simultaneous determination of mixed model parameters,which have different physical dimensions or different responses to data,is presented.Mixed parameter estimation from observed data within a single mode...A method for simultaneous determination of mixed model parameters,which have different physical dimensions or different responses to data,is presented.Mixed parameter estimation from observed data within a single model space shows instabilities and trade-offs of the solutions. We separate the model space into N-subspaces based on their physical properties or computational convenience and solve the N-subspaces systems by damped least-squares and singular-value decomposition. Since the condition number of each subsystem is smaller than that of the single global system,the approach can greatly increase the stability of the inversion. We also introduce different damping factors into the subsystems to reduce the tradeoffs between the different parameters. The damping factors depend on the conditioning of the subsystems and may be adequately chosen in a range from 0.1 % to 10 % of the largest singular value. We illustrate the method with an example of simultaneous determination of source history,source geometry,and hypocentral location from regional seismograms,although it is applicable to any geophysical inversion.展开更多
In order to investigate the influence of correlation scale error on the inversion precision of the hydraulic conductivity of the aquifer,the successive linear estimator(SLE)was used to invert the hydraulic conductivit...In order to investigate the influence of correlation scale error on the inversion precision of the hydraulic conductivity of the aquifer,the successive linear estimator(SLE)was used to invert the hydraulic conductivity field of a heterogeneous aquifer based on synthetic experiments.By increasing the numbers of observation wells and pumping tests,we analyzed the difference between the estimated and true values of hydraulic conductivity with different correlation scale errors.The relationships between the observation well number and the error in inversion results,and between the pumping test number and the error in inversion results were investigated.The results show that,if the amount of observed head data is insufficient,there will be errors in inversion results with changing correlation scale.Due to the existence of correlation scale error,the improvement of inversion precision gradually slows down with the increase of the amount of observed head data,which indicates that too much observed head data causes data redundancy.Therefore,for the synthetic experiments described in this paper,the observation well number should be less than 41,the pumping test number should be less than 17,and a more suitable method should be selected according to the precision requirements of specific situations in practical engineering.展开更多
In this paper we calculate a synthetic medium surface displacement response that is consistent with real measurement data by applying the least-square principle and a niche genetic algorithm to the parameters inversio...In this paper we calculate a synthetic medium surface displacement response that is consistent with real measurement data by applying the least-square principle and a niche genetic algorithm to the parameters inversion problem of the wave equation in a two-phase medium. We propose a niche genetic multi-parameter (including porosity, solid phase density and fluid phase density) joint inversion algorithm based on a two-phase fractured medium in the BISQ model. We take the two-phase fractured medium of the BISQ model in a two- dimensional half space as an example, and carry out the numerical reservoir parameters inversion. Results show that this method is very convenient for solving the parameters inversion problem for the wave equation in a two-phase medium, and has the advantage of strong noise rejection. Relative to conventional genetic algorithms, the niche genetic algorithm based on a sharing function can not only significantly speed up the convergence, but also improve the inversion precision.展开更多
With the swift advances in earth observation,satellite remote sensing and application of atmospheric radiation theory have been developed in the past decades,atmospheric sensing inversion with its algorithms is gettin...With the swift advances in earth observation,satellite remote sensing and application of atmospheric radiation theory have been developed in the past decades,atmospheric sensing inversion with its algorithms is getting more and more importance.It is known that since a remote sensing equation falls into an integral equation of the first kind,thus leading to the fact that it is ill-posed and particularly the solution is unsteady,tremendous difficulties arise from the retrieval.This paper will present a simple review on the inversion techniques with some necessary remarks,before introducing the successful efforts with respect to such equations and the encouraging solutions achieved in recent decades by researchers of the world.展开更多
As an important indicator parameter of fluid identification,fluid factor has always been a concern for scholars.However,when predicting Russell fluid factor or effective pore-fluid bulk modulus,it is necessary to intr...As an important indicator parameter of fluid identification,fluid factor has always been a concern for scholars.However,when predicting Russell fluid factor or effective pore-fluid bulk modulus,it is necessary to introduce a new rock skeleton parameter which is the dry-rock VP/VS ratio squared(DVRS).In the process of fluid factor calculation or inversion,the existing methods take this parameter as a static constant,which has been estimated in advance,and then apply it to the fluid factor calculation and inversion.The fluid identification analysis based on a portion of the Marmousi 2 model and numerical forward modeling test show that,taking the DVRS as a static constant will limit the identification ability of fluid factor and reduce the inversion accuracy.To solve the above problems,we proposed a new method to regard the DVRS as a dynamic variable varying with depth and lithology for the first time,then apply it to fluid factor calculation and inversion.Firstly,the exact Zoeppritz equations are rewritten into a new form containing the fluid factor and DVRS of upper and lower layers.Next,the new equations are applied to the four parameters simultaneous inversion based on the generalized nonlinear inversion(GNI)method.The testing results on a portion of the Marmousi 2 model and field data show that dynamic DVRS can significantly improve the fluid factor identification ability,effectively suppress illusion.Both synthetic and filed data tests also demonstrate that the GNI method based on Bayesian deterministic inversion(BDI)theory can successfully solve the above four parameter simultaneous inversion problem,and taking the dynamic DVRS as a target inversion parameter can effectively improve the inversion accuracy of fluid factor.All these results completely verified the feasibility and effectiveness of the proposed method.展开更多
Inversion of seawater physical parameters (temperature, salinity and density) from seismic data is an important part of Seismic Oceanography, which was raised recent years to study physical oceanography. However prese...Inversion of seawater physical parameters (temperature, salinity and density) from seismic data is an important part of Seismic Oceanography, which was raised recent years to study physical oceanography. However present methods have problems that inversion accuracy is not high or inverted parameters are incomprehensive. To overcome these problems, this paper derives Allied Elastic Impedance (AEI), from which we can extract acoustic velocity and density of seawater directly. Furthermore this paper proposes a method to fit temperature and salinity with acoustic velocity and density respectively, breaking through the limitation that temperature and salinity can only be extracted from acoustic velocity. After applying it to model and real data, we find that this method not only solves the problem that ocean density is hard to extract, but also increases accuracy of other parameters, with the temperature and salinity resolution of 0.06°C and 0.02 psu respectively. All results show that AEI is promising in inversion of seawater physical parameters.展开更多
For the 2-D wave inverse problems introduced from geophysical exploration, in this paper, the author presents integration-characteristic method to solve the velocity parameter, and then applies it to common shotpoint ...For the 2-D wave inverse problems introduced from geophysical exploration, in this paper, the author presents integration-characteristic method to solve the velocity parameter, and then applies it to common shotpoint model data, in noise-free case. The accuracy is quite good.展开更多
Pressure buildup testing can be used to analyze fracture network characteristics and conduct quantitative interpretation of relevant parameters for shale gas wells,thus providing bases for assessing the well productiv...Pressure buildup testing can be used to analyze fracture network characteristics and conduct quantitative interpretation of relevant parameters for shale gas wells,thus providing bases for assessing the well productivity and formulating proper development strategies.This study establishes a new well test interpretation model for fractured horizontal wells based on seepage mechanisms of shale reservoirs and proposes a method for identifying fracturing patterns based on the characteristic slopes of pressure buildup curves and curve combination patterns.The pressure buildup curve patterns are identified to represent three types of shale reservoirs in the Sichuan Basin,namely the moderately deep shale reservoirs with high pressure,deep shale reservoirs with ultra-high pressure,and moderately deep shale reservoirs with normal pressure.Based on this,the relationship between the typical pressure buildup curve patterns and the fracture network types are put forward.Fracturing effects of three types of shale gas reservoir are compared and analyzed.The results show that typical flow patterns of shale reservoirs include bilinear flow in primary and secondary fractures,linear flow in secondary fractures,bilinear flow in secondary fractures and matrix,and linear flow in matrix.The fracture network characteristics can be determined using the characteristic slopes of pressure buildup curves and curve combinations.The linear flow in early secondary fractures is increasingly distinct with an increase in primary fracture conductivity.Moreover,the bilinear flow in secondary fractures and matrix and the subsequent linear flow in the matrix occur as the propping and density of secondary fractures increase.The increase in the burial depth,in-situ stress,and stress difference corresponds to a decrease in the propping of primary fractures that expand along different directions in the shale gas wells in the Sichuan Basin.Four pressure buildup curve patterns exist in the Sichuan Basin and its periphery.The pattern of pressure buildup curves of shale reservoirs in the Yongchuan area can be described as 1/2/→1/4,indicating limited stimulated reservoir volume,poorly propped secondary fractures,and the forming of primary fractures that extend only to certain directions.The pressure buildup curves of shale reservoirs in the main block of the Fuling area show a pattern of 1/4/→1/2 or 1/2,indicating greater stimulated reservoir volume,well propped secondary fractures,and the forming of complex fracture networks.The pattern of pressure buildup curves of shale reservoirs in the Pingqiao area is 1/2/→1/4→/1/2,indicating a fracturing effect somewhere between that of the Fuling and Yongchuan areas.For reservoirs with normal pressure,it is difficult to determine fracture network characteristics from pressure buildup curves due to insufficient formation energy and limited liquid drainage.展开更多
基金This manuscript is supported by the National Natural Science Foundation of China(No.42174011,41874001 and 42174011).
文摘The traditional genetic algorithm(GA)has unstable inversion results and is easy to fall into the local optimum when inverting fault parameters.Therefore,this article considers the combination of GA with other non-linear algorithms in order to improve the inversion precision of GA.This paper proposes a genetic Nelder-Mead neural network algorithm(GNMNNA).This algorithm uses a neural network algorithm(NNA)to optimize the global search ability of GA.At the same time,the simplex algorithm is used to optimize the local search capability of the GA.Through numerical examples,the stability of the inversion algorithm under different strategies is explored.The experimental results show that the proposed GNMNNA has stronger inversion stability and higher precision compared with the existing algorithms.The effectiveness of GNMNNA is verified by the BodrumeKos earthquake and Monte Cristo Range earthquake.The experimental results show that GNMNNA is superior to GA and NNA in both inversion precision and computational stability.Therefore,GNMNNA has greater application potential in complex earthquake environment.
基金The Public Science and Technology Research Funds Projects of Ocean under contract No.201505002
文摘Each reflection return of a bridge over water is displayed as wide stripe in a high-resolution synthetic aperture radar (SAR) image, which lead to difficulties in a parameter inversion. Therefore, a method of bridge parameter inversion is proposed for high-resolution full polarimetric SAR (PolSAR). First, the single, double and triple- bounce returns from each component of the bridge are distinguished by the polarization scattering features. Then the reasons which lead to the backscatter echoes oft_he bridge over water being displayed as stripes are analyzed, using a principle of microwave reflection, as well as an extraction method for each reflection return, and a parameter retrieval method is obtained. Finally, the parameters of the bridge, including the height (top and bottom surfaces of the sea bridge), width, thickness, span, and height of the bridge tower, are retrieved using full polarimetric AIRSAR data. When a comparison of the measured data is completed, the results indicate that the proposed method can invert the parameters with a high accuracy, and that the inversion error of the bridge height (bottom surface) is only 1.3%. Moreover, the results also show that for the high-resolution SAR, the C and L-band images have the same ability in regards to parameter retrieval.
基金sponsored by the National Nature Science Foundation of China (Grant No.40904034 and 40839905)
文摘With a more complex pore structure system compared with clastic rocks, carbonate rocks have not yet been well described by existing conventional rock physical models concerning the pore structure vagary as well as the influence on elastic rock properties. We start with a discussion and an analysis about carbonate rock pore structure utilizing rock slices. Then, given appropriate assumptions, we introduce a new approach to modeling carbonate rocks and construct a pore structure algorithm to identify pore structure mutation with a basis on the Gassmann equation and the Eshelby-Walsh ellipsoid inclusion crack theory. Finally, we compute a single well's porosity using this new approach with full wave log data and make a comparison with the predicted result of traditional method and simultaneously invert for reservoir parameters. The study results reveal that the rock pore structure can significantly influence the rocks' elastic properties and the predicted porosity error of the new modeling approach is merely 0.74%. Therefore, the approach we introduce can effectively decrease the predicted error of reservoir parameters.
基金supported by the National Hi-Tech Research and Development Program of China (Grant No. 2007AA12Z177)
文摘A topographic parameter inversion method based on laser altimetry is developed in this paper, which can be used to deduce the surface vertical profile and retrieve the topographic parameters within the laser footprints by analyzing and simulating return waveforms. This method comprises three steps. The first step is to build the numerical models for the whole measuring procedure of laser altimetry, construct digital elevation models for surfaces with different topographic parameters, and calculate return waveforms. The second step is to analyze the simulated return waveforms to obtain their characteristics parameters, summarize the effects of the topographic parameter variations on the characteristic parameters of simulated return waveforms, and analyze the observed return waveforms of laser altimeters to acquire their characteristic parameters at the same time. The last step is to match the characteristic parameters of the simulated and observed return waveforms, and deduce the topographic parameters within the laser footprint. This method can be used to retrieve the topographic parameters within the laser footprint from the observed return waveforms of spaceborne laser altimeters and to get knowledge about the surface altitude distribution within the laser footprint other than only getting the height of the surface encountered firstly by the laser beam, which extends laser altimeters' function and makes them more like radars.
基金This research is jointly funded by the National Key Research and Development Program of China(No.2017 YFC0307401)the National Natural Science Foundation of China(No.41230318)+1 种基金the Fundamental Research Funds for the Central Universities(No.201964017)and the National Science and Technology Major Project of China(No.2016ZX05024-001-002).
文摘In Recent years,seismic data have been widely used in seismic oceanography for the inversion of oceanic parameters represented by conductivity temperature depth(CTD).Using this technique,researchers can identify the water structure with high horizontal resolution,which compensates for the deficiencies of CTD data.However,conventional inversion methods are modeldriven,such as constrained sparse spike inversion(CSSI)and full waveform inversion(FWI),and typically require prior deterministic mapping operators.In this paper,we propose a novel inversion method based on a convolutional neural network(CNN),which is purely data-driven.To solve the problem of multiple solutions,we use stepwise regression to select the optimal attributes and their combination and take two-dimensional images of the selected attributes as input data.To prevent vanishing gradients,we use the rectified linear unit(ReLU)function as the activation function of the hidden layer.Moreover,the Adam and mini-batch algorithms are combined to improve stability and efficiency.The inversion results of field data indicate that the proposed method is a robust tool for accurately predicting oceanic parameters.
基金The Scientific Research Foundation of Jiangsu University of Science and Technology for Recruited Talents under contract No.1032931907the Basic Science (Natural Science) General Program of Jiangsu Province Higher Education Institutions under contract No.21KJD140001。
文摘The dispersion characteristics of shallow water can be described by the dispersion curves,which contain substantial ocean parameter information.A fast ocean parameter inversion method based on dispersion curves with a single hydrophone is presented in this paper.The method is achieved through Bayesian theory.Several sets of dispersion curves extracted from measured data are used as the input function.The inversion is performed by matching a replica calculated with a dispersion formula.The bottom characteristics can be described by the bottom reflection phase shift parameter P.The propagation range and the depth can be inverted quickly when the seabed parameters are represented by on parameter P.The inversion results improve the inversion efficiency of the seabed parameters.Consequently,the inversion efficiency and accuracy are improved while the number of inversion parameters is decreased and the computational speed of replica is increased.The inversion results have lower error than the reference values,and the dispersion curves calculated with inversion parameters are also in good agreement with extracted curves from measured data;thus,the effectiveness of the inversion method is demonstrated.
基金the National Natural Science Foundation of China (Nos.19872002 and 10272003)Climbing Foundation of Northern Jiaotong University
文摘The multi- layers feedforward neural network is used for inversion ofmaterial constants of fluid-saturated porous media. The direct analysis of fluid-saturated porousmedia is carried out with the boundary element method. The dynamic displacement responses obtainedfrom direct analysis for prescribed material parameters constitute the sample sets training neuralnetwork. By virtue of the effective L-M training algorithm and the Tikhonov regularization method aswell as the GCV method for an appropriate selection of regu-larization parameter, the inversemapping from dynamic displacement responses to material constants is performed. Numerical examplesdemonstrate the validity of the neural network method.
基金supported by Specialized Research Fund for the Doctoral Program of Higher Education of China(20110022120004)the Fundamental Research Funds for the Central Universities
文摘For density inversion of gravity anomaly data, once the inversion method is determined, the main factors affecting the inversion result are the inversion parameters and subdivision scheme. A set of reasonable inversion parameters and subdivision scheme can, not only improve the inversion process efficiency, but also ensure inversion result accuracy. The gravity inversion method based on correlation searching and the golden section algorithm is an effective potential field inversion method. It can be used to invert 2D and 3D physical properties with potential data observed on flat or rough surfaces. In this paper, we introduce in detail the density inversion principles based on correlation searching and the golden section algorithm. Considering that the gold section algorithm is not globally optimized. we present a heuristic method to ensure the inversion result is globally optimized. With a series of model tests, we systematically compare and analyze the inversion result efficiency and accuracy with different parameters. Based on the model test results, we conclude the selection principles for each inversion parameter with which the inversion accuracy can be obviously improved.
基金supported by the National High-Tech Research and Development Program of China(863 Program)(No.2008AA093001)
文摘Cauchy priori distribution-based Bayesian AVO reflectivity inversion may lead to sparse estimates that are sensitive to large reflectivities. For the inversion, the computation of the covariance matrix and regularized terms requires prior estimation of model parameters, which makes the iterative inversion weakly nonlinear. At the same time, the relations among the model parameters are assumed linear. Furthermore, the reflectivities, the results of the inversion, or the elastic parameters with cumulative error recovered by integrating reflectivities are not well suited for detecting hydrocarbons and fuids. In contrast, in Bayesian linear AVO inversion, the elastic parameters can be directly extracted from prestack seismic data without linear assumptions for the model parameters. Considering the advantages of the abovementioned methods, the Bayesian AVO reflectivity inversion process is modified and Cauchy distribution is explored as a prior probability distribution and the time-variant covariance is also considered. Finally, we propose a new method for the weakly nonlinear AVO waveform inversion. Furthermore, the linear assumptions are abandoned and elastic parameters, such as P-wave velocity, S-wave velocity, and density, can be directly recovered from seismic data especially for interfaces with large reflectivities. Numerical analysis demonstrates that all the elastic parameters can be estimated from prestack seismic data even when the signal-to-noise ratio of the seismic data is low.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434012,41561144006,11174312 and 11404366
文摘Bottom acoustic parameters play an important role in sound field prediction. Acoustic parameters in deep water are not well understood. Bottom acoustic parameters are sensitive to the transmission-loss (TL) data in the shadow zone of deep water. We propose a multiple-step fill inversion method to invert sound speed, density and attenuation in deep water. Based on a uniform liquid hMf-space bottom model, sound speed of the bottom is inverted by using the long range TL at low frequency obtained in an acoustic propagation experiment conducted in the South China Sea (SCS) in summer 2014. Meanwhile, bottom density is estimated combining with the Hamilton sediment empirical relationship. Attenuation coefficients at different frequencies are then estimated from the TL data in the shadow zones by using the known sound speed and density as a constraint condition. The nonlinear relationship between attenuation coefficient and frequency is given in the end. Tile inverted bottom parameters can be used to forecast the transmission loss in the deep water area of SCS very we//.
基金the National Natural Science Foundation of China(Nos.42174011and 41874001).
文摘The use of geodetic observation data for seismic fault parameters inversion is the research hotspot of geodetic inversion, and it is also the focus of studying the mechanism of earthquake occurrence. Seismic fault parameters inversion has nonlinear characteristics, and the gradient-based optimizer(GBO) has the characteristics of fast convergence speed and falling into local optimum hardly. This paper applies GBO algorithm to simulated earthquakes and real LuShan earthquakes in the nonlinear inversion of the Okada model to obtain the source parameters. The simulated earthquake experiment results show that the algorithm is stable, and the seismic source parameters obtained by GBO are slightly closer to the true value than the multi peak particle swarm optimization(MPSO). In the 2013 LuShan earthquake experiment, the root mean square error between the deformation after forwarding of fault parameters obtained by the introduced GBO algorithm and the surface observation deformation was 3.703 mm, slightly better than 3.708 mm calculated by the MPSO. Moreover, the inversion result of GBO algorithm is better than MPSO algorithm in stability. The above results show that the introduced GBO algorithm has a certain practical application value in seismic fault source parameters inversion.
基金Supported by the National Natural Science Foundation of China under Grant No 11174235
文摘We develop a new approach to estimating bottom parameters based on the Bayesian theory in deep ocean. The solution in a Bayesian inversion is characterized by its posterior probability density (PPD), which combines prior information about the model with information from an observed data set. Bottom parameters are sensitive to the transmission loss (TL) data in shadow zones of deep ocean. In this study, TLs of different frequencies from the South China Sea in the summer of 2014 are used as the observed data sets. The interpretation of the multidimensional PPD requires the calculation of its moments, such as the mean, covariance, and marginal distributions, which provide parameter estimates and uncertainties. Considering that the sensitivities of shallow- zone TLs vary for different frequencies of the bottom parameters in the deep ocean, this research obtains bottom parameters at varying frequencies. Then, the inversion results are compared with the sampling data and the correlations between bottom parameters are determined. Furthermore, we show the inversion results for multi- frequency combined inversion. The inversion results are verified by the experimental TLs and the numerical results, which are calculated using the inverted bottom parameters for different source depths and receiver depths at the corresponding frequency.
基金supported by Innovation Project of Chinese Academy of Sciences
文摘A method for simultaneous determination of mixed model parameters,which have different physical dimensions or different responses to data,is presented.Mixed parameter estimation from observed data within a single model space shows instabilities and trade-offs of the solutions. We separate the model space into N-subspaces based on their physical properties or computational convenience and solve the N-subspaces systems by damped least-squares and singular-value decomposition. Since the condition number of each subsystem is smaller than that of the single global system,the approach can greatly increase the stability of the inversion. We also introduce different damping factors into the subsystems to reduce the tradeoffs between the different parameters. The damping factors depend on the conditioning of the subsystems and may be adequately chosen in a range from 0.1 % to 10 % of the largest singular value. We illustrate the method with an example of simultaneous determination of source history,source geometry,and hypocentral location from regional seismograms,although it is applicable to any geophysical inversion.
基金This work was supported by the National Natural Science Foundation of China(Grants No.51879134 and 51569023)the First-class Discipline Construction Funding Project for the Ningxia University of China(Hydraulic Engineering)(Grant No.NXYLXK2017A03).
文摘In order to investigate the influence of correlation scale error on the inversion precision of the hydraulic conductivity of the aquifer,the successive linear estimator(SLE)was used to invert the hydraulic conductivity field of a heterogeneous aquifer based on synthetic experiments.By increasing the numbers of observation wells and pumping tests,we analyzed the difference between the estimated and true values of hydraulic conductivity with different correlation scale errors.The relationships between the observation well number and the error in inversion results,and between the pumping test number and the error in inversion results were investigated.The results show that,if the amount of observed head data is insufficient,there will be errors in inversion results with changing correlation scale.Due to the existence of correlation scale error,the improvement of inversion precision gradually slows down with the increase of the amount of observed head data,which indicates that too much observed head data causes data redundancy.Therefore,for the synthetic experiments described in this paper,the observation well number should be less than 41,the pumping test number should be less than 17,and a more suitable method should be selected according to the precision requirements of specific situations in practical engineering.
基金sponsored by the National Science and Technology Major Project(Grant No.2011ZX05025-001-07)
文摘In this paper we calculate a synthetic medium surface displacement response that is consistent with real measurement data by applying the least-square principle and a niche genetic algorithm to the parameters inversion problem of the wave equation in a two-phase medium. We propose a niche genetic multi-parameter (including porosity, solid phase density and fluid phase density) joint inversion algorithm based on a two-phase fractured medium in the BISQ model. We take the two-phase fractured medium of the BISQ model in a two- dimensional half space as an example, and carry out the numerical reservoir parameters inversion. Results show that this method is very convenient for solving the parameters inversion problem for the wave equation in a two-phase medium, and has the advantage of strong noise rejection. Relative to conventional genetic algorithms, the niche genetic algorithm based on a sharing function can not only significantly speed up the convergence, but also improve the inversion precision.
基金This work is supported partly by the Meteorological Office of Air Command
文摘With the swift advances in earth observation,satellite remote sensing and application of atmospheric radiation theory have been developed in the past decades,atmospheric sensing inversion with its algorithms is getting more and more importance.It is known that since a remote sensing equation falls into an integral equation of the first kind,thus leading to the fact that it is ill-posed and particularly the solution is unsteady,tremendous difficulties arise from the retrieval.This paper will present a simple review on the inversion techniques with some necessary remarks,before introducing the successful efforts with respect to such equations and the encouraging solutions achieved in recent decades by researchers of the world.
基金the National Natural Science Foundation of China(41904116,41874156,42074167 and 42204135)the Natural Science Foundation of Hunan Province(2020JJ5168)the China Postdoctoral Science Foundation(2021M703629)for their funding of this research.
文摘As an important indicator parameter of fluid identification,fluid factor has always been a concern for scholars.However,when predicting Russell fluid factor or effective pore-fluid bulk modulus,it is necessary to introduce a new rock skeleton parameter which is the dry-rock VP/VS ratio squared(DVRS).In the process of fluid factor calculation or inversion,the existing methods take this parameter as a static constant,which has been estimated in advance,and then apply it to the fluid factor calculation and inversion.The fluid identification analysis based on a portion of the Marmousi 2 model and numerical forward modeling test show that,taking the DVRS as a static constant will limit the identification ability of fluid factor and reduce the inversion accuracy.To solve the above problems,we proposed a new method to regard the DVRS as a dynamic variable varying with depth and lithology for the first time,then apply it to fluid factor calculation and inversion.Firstly,the exact Zoeppritz equations are rewritten into a new form containing the fluid factor and DVRS of upper and lower layers.Next,the new equations are applied to the four parameters simultaneous inversion based on the generalized nonlinear inversion(GNI)method.The testing results on a portion of the Marmousi 2 model and field data show that dynamic DVRS can significantly improve the fluid factor identification ability,effectively suppress illusion.Both synthetic and filed data tests also demonstrate that the GNI method based on Bayesian deterministic inversion(BDI)theory can successfully solve the above four parameter simultaneous inversion problem,and taking the dynamic DVRS as a target inversion parameter can effectively improve the inversion accuracy of fluid factor.All these results completely verified the feasibility and effectiveness of the proposed method.
文摘Inversion of seawater physical parameters (temperature, salinity and density) from seismic data is an important part of Seismic Oceanography, which was raised recent years to study physical oceanography. However present methods have problems that inversion accuracy is not high or inverted parameters are incomprehensive. To overcome these problems, this paper derives Allied Elastic Impedance (AEI), from which we can extract acoustic velocity and density of seawater directly. Furthermore this paper proposes a method to fit temperature and salinity with acoustic velocity and density respectively, breaking through the limitation that temperature and salinity can only be extracted from acoustic velocity. After applying it to model and real data, we find that this method not only solves the problem that ocean density is hard to extract, but also increases accuracy of other parameters, with the temperature and salinity resolution of 0.06°C and 0.02 psu respectively. All results show that AEI is promising in inversion of seawater physical parameters.
文摘For the 2-D wave inverse problems introduced from geophysical exploration, in this paper, the author presents integration-characteristic method to solve the velocity parameter, and then applies it to common shotpoint model data, in noise-free case. The accuracy is quite good.
基金SINOPEC's Scientific and Technological Research Project:Research on effective production strategies of Jurassic continental shale oil and gas(No.P21078-5).
文摘Pressure buildup testing can be used to analyze fracture network characteristics and conduct quantitative interpretation of relevant parameters for shale gas wells,thus providing bases for assessing the well productivity and formulating proper development strategies.This study establishes a new well test interpretation model for fractured horizontal wells based on seepage mechanisms of shale reservoirs and proposes a method for identifying fracturing patterns based on the characteristic slopes of pressure buildup curves and curve combination patterns.The pressure buildup curve patterns are identified to represent three types of shale reservoirs in the Sichuan Basin,namely the moderately deep shale reservoirs with high pressure,deep shale reservoirs with ultra-high pressure,and moderately deep shale reservoirs with normal pressure.Based on this,the relationship between the typical pressure buildup curve patterns and the fracture network types are put forward.Fracturing effects of three types of shale gas reservoir are compared and analyzed.The results show that typical flow patterns of shale reservoirs include bilinear flow in primary and secondary fractures,linear flow in secondary fractures,bilinear flow in secondary fractures and matrix,and linear flow in matrix.The fracture network characteristics can be determined using the characteristic slopes of pressure buildup curves and curve combinations.The linear flow in early secondary fractures is increasingly distinct with an increase in primary fracture conductivity.Moreover,the bilinear flow in secondary fractures and matrix and the subsequent linear flow in the matrix occur as the propping and density of secondary fractures increase.The increase in the burial depth,in-situ stress,and stress difference corresponds to a decrease in the propping of primary fractures that expand along different directions in the shale gas wells in the Sichuan Basin.Four pressure buildup curve patterns exist in the Sichuan Basin and its periphery.The pattern of pressure buildup curves of shale reservoirs in the Yongchuan area can be described as 1/2/→1/4,indicating limited stimulated reservoir volume,poorly propped secondary fractures,and the forming of primary fractures that extend only to certain directions.The pressure buildup curves of shale reservoirs in the main block of the Fuling area show a pattern of 1/4/→1/2 or 1/2,indicating greater stimulated reservoir volume,well propped secondary fractures,and the forming of complex fracture networks.The pattern of pressure buildup curves of shale reservoirs in the Pingqiao area is 1/2/→1/4→/1/2,indicating a fracturing effect somewhere between that of the Fuling and Yongchuan areas.For reservoirs with normal pressure,it is difficult to determine fracture network characteristics from pressure buildup curves due to insufficient formation energy and limited liquid drainage.