The FCSE controlling equation of pinned thinwalled curve box was derived and the indeterminate problem of continuous thin-walled curve box with diaphragm was solved based on flexibility theory. With Bayesian statistic...The FCSE controlling equation of pinned thinwalled curve box was derived and the indeterminate problem of continuous thin-walled curve box with diaphragm was solved based on flexibility theory. With Bayesian statistical theory,dynamic Bayesian error function of displacement parameters of indeterminate curve box was founded. The corresponding formulas of dynamic Bayesian expectation and variance were deduced. Combined with one-dimensional Fibonacci automatic search scheme of optimal step size,the Powell optimization theory was utilized to research the stochastic identification of displacement parameters of indeterminate thin-walled curve box. Then the identification steps were presented in detail and the corresponding calculation procedure was compiled. Through some classic examples,it is obtained that stochastic performances of systematic parameters and systematic responses are simultaneously deliberated in dynamic Bayesian error function. The one-dimensional optimization problem of the optimal step size is solved by adopting Fibonacci search method. And the Powell identification of displacement parameters of indeterminate thin-walled curve box has satisfied numerical stability and convergence,which demonstrates that the presented method and the compiled procedure are correct and reliable.During parameters鈥?iterative processes,the Powell theory is irrelevant with the calculation of finite curve strip element(FCSE) partial differentiation,which proves high computation effciency of the studied method.展开更多
We develop a new approach to estimating bottom parameters based on the Bayesian theory in deep ocean. The solution in a Bayesian inversion is characterized by its posterior probability density (PPD), which combines ...We develop a new approach to estimating bottom parameters based on the Bayesian theory in deep ocean. The solution in a Bayesian inversion is characterized by its posterior probability density (PPD), which combines prior information about the model with information from an observed data set. Bottom parameters are sensitive to the transmission loss (TL) data in shadow zones of deep ocean. In this study, TLs of different frequencies from the South China Sea in the summer of 2014 are used as the observed data sets. The interpretation of the multidimensional PPD requires the calculation of its moments, such as the mean, covariance, and marginal distributions, which provide parameter estimates and uncertainties. Considering that the sensitivities of shallow- zone TLs vary for different frequencies of the bottom parameters in the deep ocean, this research obtains bottom parameters at varying frequencies. Then, the inversion results are compared with the sampling data and the correlations between bottom parameters are determined. Furthermore, we show the inversion results for multi- frequency combined inversion. The inversion results are verified by the experimental TLs and the numerical results, which are calculated using the inverted bottom parameters for different source depths and receiver depths at the corresponding frequency.展开更多
New concepts such as intramolecular orientational order parameter and corresponding model as well as theory were proposed to describe the intramolecular orientation of mesogenic units in the liquid crystalline polymer...New concepts such as intramolecular orientational order parameter and corresponding model as well as theory were proposed to describe the intramolecular orientation of mesogenic units in the liquid crystalline polymer chains. The relationship between the intramolecular orientational order parameter and the molecular geometrical parameters such as the bond angle, the bond rotational angle and the rotational potential energy of chemical bonds was deduced. A significant even-odd oscillation of the intramolecular orientational order parameter of LCPs with different length of flexible spacer was found and rationally related to even-odd zig-zag manner of transition properties The verification and application of the theory are also discussed. The isotropic transition temperature predicted by the theory is shown to be in favourable agreement with the experiments.展开更多
Abstract We consider the BSBM (Bekenstein, Sandvik, Barrow and Magueijo) cos- mological model in the presence of tachyon potential with the aim of studying the sta- bility of the model and test it against observatio...Abstract We consider the BSBM (Bekenstein, Sandvik, Barrow and Magueijo) cos- mological model in the presence of tachyon potential with the aim of studying the sta- bility of the model and test it against observations. The phase space analysis shows that from fourteen critical points that represent the state of the universe, only one is stable. With a small perturbation, the universe transits from a state of unstable deceleration to stable acceleration. The stability analysis combined with the best fitting process imposes constraints on the cosmological parameters that are in agreement with ob- servation. In the BSBM theory, the variation of fundamental constants is driven from variation of a scalar field. The tachyonic scalar field, responsible for both variation of fundamental constants and universal acceleration, is reconstructed.展开更多
Exact solutions for a model with variable G, A and bulk viscosity are obtained. Inflationary solutions with constant (de Sitter-type) and variable energy density are found. An expanding anisotropic universe is found t...Exact solutions for a model with variable G, A and bulk viscosity are obtained. Inflationary solutions with constant (de Sitter-type) and variable energy density are found. An expanding anisotropic universe is found to isotropize during its expansion but a static universe cannot isotropize. The gravitational constant is found to increase with time and the cosmological constant decreases with time as展开更多
Microwave remote sensing has become the primary means for sea-ice research, and has been supported by a great deal of field experiments and theoretical studies regarding sea-ice microwave scattering. However, these st...Microwave remote sensing has become the primary means for sea-ice research, and has been supported by a great deal of field experiments and theoretical studies regarding sea-ice microwave scattering. However, these studies have been barely carried in the Bohai Sea. The sea-ice microwave scattering mechanism was first developed for the thin sea ice with slight roughness in the Bohai Sea in the winter of 2012, and included the backscattering coefficients which were measured on the different conditions of three bands(L, C and X), two polarizations(HH and VV), and incident angles of 20° to 60°, using a ground-based scatterometer and the synchronous physical parameters of the sea-ice temperature, density, thickness, salinity, and so on. The theoretical model of the sea-ice electromagnetic scattering is obtained based on these physical parameters. The research regarding the sea-ice microwave scattering mechanism is carried out through two means, which includes the comparison between the field microwave scattering data and the simulation results of the theoretical model, as well as the feature analysis of the four components of the sea-ice electromagnetic scattering. It is revealed that the sea-ice microwave scattering data and the theoretical simulation results vary in the same trend with the incident angles. Also, there is a visible variant in the sensitivity of every component to the different bands.For example, the C and X bands are sensitive to the top surface, the X band is sensitive to the scatterers, and the L and C bands are sensitive to the bottom surface, and so on. It is suggested that the features of the sea-ice surfaces and scatterers can be retrieved by the further research in the future. This experiment can provide an experimental and theoretical foundation for research regarding the sea-ice microwave scattering characteristics in the Bohai Sea.展开更多
Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for the Bianchi type-I universe by assuming that the cosmological term is proportional...Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for the Bianchi type-I universe by assuming that the cosmological term is proportional to R-m (R is a scale factor and m is a constant).A variety of solutions are presented.The physical significance of the respective cosmological models are also discussed.展开更多
We study cosmic dynamics in the context of the normal branch of the DGP braneworld model. Using current Planck data, we find the best fitting model and associated cosmological parameters in non-fiat ADGP. With the tra...We study cosmic dynamics in the context of the normal branch of the DGP braneworld model. Using current Planck data, we find the best fitting model and associated cosmological parameters in non-fiat ADGP. With the transition redshift as a basic variable and statefinder parameters, our result shows that the Universe starts its accelerated expansion phase slightly earlier than expected in ACDM cosmology. The result also alleviates the coincidence problem of the ACDM model.展开更多
An action of general form is proposed for a Universe containing matter, radiation and dark energy. The latter is interpreted as a tachyon field non-minimally coupled to the scalar curvature. The Palatini approach is u...An action of general form is proposed for a Universe containing matter, radiation and dark energy. The latter is interpreted as a tachyon field non-minimally coupled to the scalar curvature. The Palatini approach is used when varying the action so the connection is given by a more generic form. Both the self-interaction potential and the non-minimally coupling function are obtained by constraining the system to present invariability under global point transformation of the fields (Noether Symmetry). The only possible solution is shown to be that of minimal coupling and constant potential (Chaplygin gas). The behavior of the dynamical properties of the system is compared to recent observational data, which infers that the tachyon field must indeed be dynamical.展开更多
We investigate the linear amplitude of mass fluctuations in the universe, σ8, and the present mass density parameter of the Universe, Ωm, from statistical strong gravitational lensing. We use the two population mode...We investigate the linear amplitude of mass fluctuations in the universe, σ8, and the present mass density parameter of the Universe, Ωm, from statistical strong gravitational lensing. We use the two population model of lens halos with fixed cooling mass scale Mc = 3×1013h-1M⊙ to match the observed lensing probabilities, and leave σ8 orΩm as a free parameter to be constrained by the data. Another varying parameter, the equation of state of dark energy ω, and its typical values of -1, -2/3, -1/2 and -1/3 are investigated. We find that σ8 is degenerate with Ωm in a way similar to that suggested by present day cluster abundance as well as cosmic shear lensing measurements: σ8Ω0.6m≈0.33. However, both σ8≤0.7 and Ωm≤0.2 can be safely ruled out, the best fit is when σ8 = 1.0, Ωm = 0.3 and ω= - 1. This result is different from that obtained by Bahcall & Bode, who gave σ8 = 0.98±0.1 and Ωm = 0.17 ±0.05. For σ8 = 1.0, the higher value ofΩm = 0.35 requires ω = -2/3 and Ωm = 0.40 requires ω= -1/2.展开更多
We study the statistics of large-separation multiply-imaged quasars lensed by clusters of galaxies. In particular, we examine how the observed brightest cluster galaxies (BCGs) affect the predicted numbers of wide-s...We study the statistics of large-separation multiply-imaged quasars lensed by clusters of galaxies. In particular, we examine how the observed brightest cluster galaxies (BCGs) affect the predicted numbers of wide-separation lenses. We model the lens as an NFW-profiled dark matter halo with a truncated singular isothermal sphere to represent the BCG in its center. We mainly make predictions for the Sloan Digital Sky Survey Quasar Lens Search (SQLS) sample from the Data Release 5 (DRS) in two standard ACDM cosmological models: a model with matter density ΩM = 0.3 and δ8 = 0.9, as is usually adopted in the literature (ACDM1), and a model suggested by the WMAP seven-year (WMAPT) data with ΩM = 0.266 and δ8 = 0.801. We also study the lensing properties for the WMAP3 cosmology in order to compare with the previous work. We find that BCGs in the centers of clusters significantly enhance the lensing efficiency by a factor of 2 - 3 compared with that of NFW-profiled pure dark matter halos. In addition, the dependence of mass ratios of BCGs to their host halos on the host halo masses reduces the lensing rate by - 20% from assuming a constant ratio as in previous studies, but considering the evolution of this ratio with redshift out to z - 1 would reduce it by - 3%. Moreover, we predict that the numbers of lensed quasars with image separations larger than 10″ in the statistical sample of SQLS from DR5 are 1.22 and 0.47, respectively for ACDM1 and WMAP7 and 0.73 and 0.33 for separations between 10″ and 20″, which are consistent with the only observed cluster lens with such a large separation in the complete SQLS sample.展开更多
There is sufficient amount of internal evidence in the nature of gravitational theories to indicate that gravity is an emergent phenomenon like, e.g, elasticity. Such an emergent nature is most apparent in the structu...There is sufficient amount of internal evidence in the nature of gravitational theories to indicate that gravity is an emergent phenomenon like, e.g, elasticity. Such an emergent nature is most apparent in the structure of gravitational dynamics. It is, however, possible to go beyond the field equations and study the space itseff as emer- gent in a well-defined manner in (and possibly only in) the context of cosmology. In the first part of this review, I describe various pieces of evidence which show that gravitational field equations are emergent. In the second part, I describe a novel way of studying cosmology in which I interpret the expansion of the universe as equivalent to the emergence of space itself. In such an approach, the dynamics evolves towards a state of holographic equipartition, characterized by an equality in the number of bulk and surface degrees of freedom in a region bounded by the Hubble radius. This prin- ciple correctly reproduces the standard evolution of a Friedmann universe. Further, (a) it demands the existence of an early inflationary phase as well as late time accelera- tion for its successful implementation and (b) allows us to link the value of late time cosmological constant to the e-folding factor during inflation.展开更多
Quantum parameter estimation is a crucial tool for inferring unknown parameters in physical models from experimental data.The Jaynes–Cummings model is a widely used model in quantum optics that describes the interact...Quantum parameter estimation is a crucial tool for inferring unknown parameters in physical models from experimental data.The Jaynes–Cummings model is a widely used model in quantum optics that describes the interaction between an atom and a single-mode quantum optical field.In this Letter,we systematically investigate the problem of estimating the atom-light coupling strength in this model and optimize the initial state in the full Hilbert space.We compare the precision limits achievable for different optical field quantum states,including coherent states,amplitude-and phase-squeezed states,and provide experimental suggestions with an easily prepared substitute for the optimal state.Our results provide valuable insights into optimizing quantum parameter estimation in the Jaynes–Cummings model and can have practical implications for quantum metrology with hybrid quantum systems.展开更多
We analyze a common feature of p-Kemeny AGGregation(p-KAGG) and p-One-Sided Crossing Minimization(p-OSCM) to provide new insights and findings of interest to both the graph drawing community and the social choice ...We analyze a common feature of p-Kemeny AGGregation(p-KAGG) and p-One-Sided Crossing Minimization(p-OSCM) to provide new insights and findings of interest to both the graph drawing community and the social choice community. We obtain parameterized subexponential-time algorithms for p-KAGG—a problem in social choice theory—and for p-OSCM—a problem in graph drawing. These algorithms run in time O*(2O(√k log k)),where k is the parameter, and significantly improve the previous best algorithms with running times O.1.403k/and O.1.4656k/, respectively. We also study natural "above-guarantee" versions of these problems and show them to be fixed parameter tractable. In fact, we show that the above-guarantee versions of these problems are equivalent to a weighted variant of p-directed feedback arc set. Our results for the above-guarantee version of p-KAGG reveal an interesting contrast. We show that when the number of "votes" in the input to p-KAGG is odd the above guarantee version can still be solved in time O*(2O(√k log k)), while if it is even then the problem cannot have a subexponential time algorithm unless the exponential time hypothesis fails(equivalently, unless FPT D M[1]).展开更多
基金supported by the National Natural Science Foundation of China (10472045, 10772078 and 11072108)the Science Foundation of NUAA(S0851-013)
文摘The FCSE controlling equation of pinned thinwalled curve box was derived and the indeterminate problem of continuous thin-walled curve box with diaphragm was solved based on flexibility theory. With Bayesian statistical theory,dynamic Bayesian error function of displacement parameters of indeterminate curve box was founded. The corresponding formulas of dynamic Bayesian expectation and variance were deduced. Combined with one-dimensional Fibonacci automatic search scheme of optimal step size,the Powell optimization theory was utilized to research the stochastic identification of displacement parameters of indeterminate thin-walled curve box. Then the identification steps were presented in detail and the corresponding calculation procedure was compiled. Through some classic examples,it is obtained that stochastic performances of systematic parameters and systematic responses are simultaneously deliberated in dynamic Bayesian error function. The one-dimensional optimization problem of the optimal step size is solved by adopting Fibonacci search method. And the Powell identification of displacement parameters of indeterminate thin-walled curve box has satisfied numerical stability and convergence,which demonstrates that the presented method and the compiled procedure are correct and reliable.During parameters鈥?iterative processes,the Powell theory is irrelevant with the calculation of finite curve strip element(FCSE) partial differentiation,which proves high computation effciency of the studied method.
基金Supported by the National Natural Science Foundation of China under Grant No 11174235
文摘We develop a new approach to estimating bottom parameters based on the Bayesian theory in deep ocean. The solution in a Bayesian inversion is characterized by its posterior probability density (PPD), which combines prior information about the model with information from an observed data set. Bottom parameters are sensitive to the transmission loss (TL) data in shadow zones of deep ocean. In this study, TLs of different frequencies from the South China Sea in the summer of 2014 are used as the observed data sets. The interpretation of the multidimensional PPD requires the calculation of its moments, such as the mean, covariance, and marginal distributions, which provide parameter estimates and uncertainties. Considering that the sensitivities of shallow- zone TLs vary for different frequencies of the bottom parameters in the deep ocean, this research obtains bottom parameters at varying frequencies. Then, the inversion results are compared with the sampling data and the correlations between bottom parameters are determined. Furthermore, we show the inversion results for multi- frequency combined inversion. The inversion results are verified by the experimental TLs and the numerical results, which are calculated using the inverted bottom parameters for different source depths and receiver depths at the corresponding frequency.
文摘New concepts such as intramolecular orientational order parameter and corresponding model as well as theory were proposed to describe the intramolecular orientation of mesogenic units in the liquid crystalline polymer chains. The relationship between the intramolecular orientational order parameter and the molecular geometrical parameters such as the bond angle, the bond rotational angle and the rotational potential energy of chemical bonds was deduced. A significant even-odd oscillation of the intramolecular orientational order parameter of LCPs with different length of flexible spacer was found and rationally related to even-odd zig-zag manner of transition properties The verification and application of the theory are also discussed. The isotropic transition temperature predicted by the theory is shown to be in favourable agreement with the experiments.
文摘Abstract We consider the BSBM (Bekenstein, Sandvik, Barrow and Magueijo) cos- mological model in the presence of tachyon potential with the aim of studying the sta- bility of the model and test it against observations. The phase space analysis shows that from fourteen critical points that represent the state of the universe, only one is stable. With a small perturbation, the universe transits from a state of unstable deceleration to stable acceleration. The stability analysis combined with the best fitting process imposes constraints on the cosmological parameters that are in agreement with ob- servation. In the BSBM theory, the variation of fundamental constants is driven from variation of a scalar field. The tachyonic scalar field, responsible for both variation of fundamental constants and universal acceleration, is reconstructed.
文摘Exact solutions for a model with variable G, A and bulk viscosity are obtained. Inflationary solutions with constant (de Sitter-type) and variable energy density are found. An expanding anisotropic universe is found to isotropize during its expansion but a static universe cannot isotropize. The gravitational constant is found to increase with time and the cosmological constant decreases with time as
基金The National Science Foundation for Young Scientists of China under contract No.41306193the National Special Research Fund for Non-Profit Marine Sector under of China under contract No.201105016the European Space Agency-Ministry of Science and Technology of the People’s Republic of China(ESA-MOST)Dragon 3 Cooperation Programme under contract No.10501
文摘Microwave remote sensing has become the primary means for sea-ice research, and has been supported by a great deal of field experiments and theoretical studies regarding sea-ice microwave scattering. However, these studies have been barely carried in the Bohai Sea. The sea-ice microwave scattering mechanism was first developed for the thin sea ice with slight roughness in the Bohai Sea in the winter of 2012, and included the backscattering coefficients which were measured on the different conditions of three bands(L, C and X), two polarizations(HH and VV), and incident angles of 20° to 60°, using a ground-based scatterometer and the synchronous physical parameters of the sea-ice temperature, density, thickness, salinity, and so on. The theoretical model of the sea-ice electromagnetic scattering is obtained based on these physical parameters. The research regarding the sea-ice microwave scattering mechanism is carried out through two means, which includes the comparison between the field microwave scattering data and the simulation results of the theoretical model, as well as the feature analysis of the four components of the sea-ice electromagnetic scattering. It is revealed that the sea-ice microwave scattering data and the theoretical simulation results vary in the same trend with the incident angles. Also, there is a visible variant in the sensitivity of every component to the different bands.For example, the C and X bands are sensitive to the top surface, the X band is sensitive to the scatterers, and the L and C bands are sensitive to the bottom surface, and so on. It is suggested that the features of the sea-ice surfaces and scatterers can be retrieved by the further research in the future. This experiment can provide an experimental and theoretical foundation for research regarding the sea-ice microwave scattering characteristics in the Bohai Sea.
文摘Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for the Bianchi type-I universe by assuming that the cosmological term is proportional to R-m (R is a scale factor and m is a constant).A variety of solutions are presented.The physical significance of the respective cosmological models are also discussed.
文摘We study cosmic dynamics in the context of the normal branch of the DGP braneworld model. Using current Planck data, we find the best fitting model and associated cosmological parameters in non-fiat ADGP. With the transition redshift as a basic variable and statefinder parameters, our result shows that the Universe starts its accelerated expansion phase slightly earlier than expected in ACDM cosmology. The result also alleviates the coincidence problem of the ACDM model.
基金CNPq for the financial support that allowed this work to be done
文摘An action of general form is proposed for a Universe containing matter, radiation and dark energy. The latter is interpreted as a tachyon field non-minimally coupled to the scalar curvature. The Palatini approach is used when varying the action so the connection is given by a more generic form. Both the self-interaction potential and the non-minimally coupling function are obtained by constraining the system to present invariability under global point transformation of the fields (Noether Symmetry). The only possible solution is shown to be that of minimal coupling and constant potential (Chaplygin gas). The behavior of the dynamical properties of the system is compared to recent observational data, which infers that the tachyon field must indeed be dynamical.
基金Supported by the National Natural Science Foundation of China
文摘We investigate the linear amplitude of mass fluctuations in the universe, σ8, and the present mass density parameter of the Universe, Ωm, from statistical strong gravitational lensing. We use the two population model of lens halos with fixed cooling mass scale Mc = 3×1013h-1M⊙ to match the observed lensing probabilities, and leave σ8 orΩm as a free parameter to be constrained by the data. Another varying parameter, the equation of state of dark energy ω, and its typical values of -1, -2/3, -1/2 and -1/3 are investigated. We find that σ8 is degenerate with Ωm in a way similar to that suggested by present day cluster abundance as well as cosmic shear lensing measurements: σ8Ω0.6m≈0.33. However, both σ8≤0.7 and Ωm≤0.2 can be safely ruled out, the best fit is when σ8 = 1.0, Ωm = 0.3 and ω= - 1. This result is different from that obtained by Bahcall & Bode, who gave σ8 = 0.98±0.1 and Ωm = 0.17 ±0.05. For σ8 = 1.0, the higher value ofΩm = 0.35 requires ω = -2/3 and Ωm = 0.40 requires ω= -1/2.
基金supported by the National Natural Science Foundation of China(Grant No. 11073023)the National Basic Research Program of China (973 ProgramGrant No.2009CB24901)
文摘We study the statistics of large-separation multiply-imaged quasars lensed by clusters of galaxies. In particular, we examine how the observed brightest cluster galaxies (BCGs) affect the predicted numbers of wide-separation lenses. We model the lens as an NFW-profiled dark matter halo with a truncated singular isothermal sphere to represent the BCG in its center. We mainly make predictions for the Sloan Digital Sky Survey Quasar Lens Search (SQLS) sample from the Data Release 5 (DRS) in two standard ACDM cosmological models: a model with matter density ΩM = 0.3 and δ8 = 0.9, as is usually adopted in the literature (ACDM1), and a model suggested by the WMAP seven-year (WMAPT) data with ΩM = 0.266 and δ8 = 0.801. We also study the lensing properties for the WMAP3 cosmology in order to compare with the previous work. We find that BCGs in the centers of clusters significantly enhance the lensing efficiency by a factor of 2 - 3 compared with that of NFW-profiled pure dark matter halos. In addition, the dependence of mass ratios of BCGs to their host halos on the host halo masses reduces the lensing rate by - 20% from assuming a constant ratio as in previous studies, but considering the evolution of this ratio with redshift out to z - 1 would reduce it by - 3%. Moreover, we predict that the numbers of lensed quasars with image separations larger than 10″ in the statistical sample of SQLS from DR5 are 1.22 and 0.47, respectively for ACDM1 and WMAP7 and 0.73 and 0.33 for separations between 10″ and 20″, which are consistent with the only observed cluster lens with such a large separation in the complete SQLS sample.
基金supported by a J.C. Bose research grant of DST, India
文摘There is sufficient amount of internal evidence in the nature of gravitational theories to indicate that gravity is an emergent phenomenon like, e.g, elasticity. Such an emergent nature is most apparent in the structure of gravitational dynamics. It is, however, possible to go beyond the field equations and study the space itseff as emer- gent in a well-defined manner in (and possibly only in) the context of cosmology. In the first part of this review, I describe various pieces of evidence which show that gravitational field equations are emergent. In the second part, I describe a novel way of studying cosmology in which I interpret the expansion of the universe as equivalent to the emergence of space itself. In such an approach, the dynamics evolves towards a state of holographic equipartition, characterized by an equality in the number of bulk and surface degrees of freedom in a region bounded by the Hubble radius. This prin- ciple correctly reproduces the standard evolution of a Friedmann universe. Further, (a) it demands the existence of an early inflationary phase as well as late time accelera- tion for its successful implementation and (b) allows us to link the value of late time cosmological constant to the e-folding factor during inflation.
基金supported by the Innovation Program for Quantum Science and Technology(No.2021ZD0303200)the National Key Research and Development Program of China(No.2016YFA0302001)+4 种基金the National Natural Science Foundation of China(Nos.11974116,12234014,and 11654005)the Shanghai Municipal Science and Technology Major Project(No.2019SHZDZX01)the Fundamental Research Funds for the Central Universitiesthe Chinese National Youth Talent Support Programand the Shanghai Talent Program.
文摘Quantum parameter estimation is a crucial tool for inferring unknown parameters in physical models from experimental data.The Jaynes–Cummings model is a widely used model in quantum optics that describes the interaction between an atom and a single-mode quantum optical field.In this Letter,we systematically investigate the problem of estimating the atom-light coupling strength in this model and optimize the initial state in the full Hilbert space.We compare the precision limits achievable for different optical field quantum states,including coherent states,amplitude-and phase-squeezed states,and provide experimental suggestions with an easily prepared substitute for the optimal state.Our results provide valuable insights into optimizing quantum parameter estimation in the Jaynes–Cummings model and can have practical implications for quantum metrology with hybrid quantum systems.
基金supported by a GermanNorwegian PPP grantsupported by the Indo-German Max Planck Center for Computer Science (IMPECS)
文摘We analyze a common feature of p-Kemeny AGGregation(p-KAGG) and p-One-Sided Crossing Minimization(p-OSCM) to provide new insights and findings of interest to both the graph drawing community and the social choice community. We obtain parameterized subexponential-time algorithms for p-KAGG—a problem in social choice theory—and for p-OSCM—a problem in graph drawing. These algorithms run in time O*(2O(√k log k)),where k is the parameter, and significantly improve the previous best algorithms with running times O.1.403k/and O.1.4656k/, respectively. We also study natural "above-guarantee" versions of these problems and show them to be fixed parameter tractable. In fact, we show that the above-guarantee versions of these problems are equivalent to a weighted variant of p-directed feedback arc set. Our results for the above-guarantee version of p-KAGG reveal an interesting contrast. We show that when the number of "votes" in the input to p-KAGG is odd the above guarantee version can still be solved in time O*(2O(√k log k)), while if it is even then the problem cannot have a subexponential time algorithm unless the exponential time hypothesis fails(equivalently, unless FPT D M[1]).