For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic des...For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic description or multi-model description in that the weighting coef-ficients have respective meanings. They, however, have stability aspect in common. By adopting astability condition for polytopic systems obtained via PDLF, and combining the properties of T-Sfuzzy systems, new results are given in this paper. An example shows that by applying the newresults, the stability conditions that can be distinguished are less conservative.展开更多
The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain syst...The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.展开更多
An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local ...An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.展开更多
This paper investigates the stability problem for time-varying delay systems.To obtain a larger delay bound,this paper uses the second-order canonical Bessel-Legendre(BL)inequality.Secondly,using four couples of integ...This paper investigates the stability problem for time-varying delay systems.To obtain a larger delay bound,this paper uses the second-order canonical Bessel-Legendre(BL)inequality.Secondly,using four couples of integral terms in the augmented Lyapunov-Krasovskii function(LKF)to enhance the relationship between integral functionals and other vectors.Furthermore,unlike the construction of the traditional LKF,a novel augmented LKF is constructed with two new delayproduct-type terms,which adds more state information and leads to less conservative results.Finally,two numerical examples are provided to demonstrate the effectiveness and the significant improvement of the proposed stability criteria.展开更多
The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional ...The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional approach combining with a new method of introducing some relaxation matrices and tuning parameters, which can be chosen properly to lead to a less conservative result. First, a sufficient condition is proposed for robust stability of the autonomic system; next, the sufficient conditions of the robust stabilization controller and the existence condition of sliding mode are developed. The results are given in terms of linear matrix inequalities (LMIs), which can be solved via efficient interior-point algorithms. A numerical example is presented to illustrate the feasibility and advantages of the proposed design scheme.展开更多
This paper deals with the stability of systems with discontinuous righthand side (with solutions in Filippov's sense) via locally Lipschitz continuous and regular vector Lyapunov functions. A new type of “set-valu...This paper deals with the stability of systems with discontinuous righthand side (with solutions in Filippov's sense) via locally Lipschitz continuous and regular vector Lyapunov functions. A new type of “set-valued derivative” of vector Lyapunov functions is introduced, some generalized comparison principles on discontinuous systems are shown. Furthermore, Lyapunov stability theory is developed for a class of discontinuous systems based on locally Lipschitz continuous and regular vector Lyapunov functions.展开更多
The separation of the Lyapunov matrices and system matrices plays an important role when one uses parameter-dependent Lyapunov functional handling systems with polytopic type uncertainties. The delay-dependent robust ...The separation of the Lyapunov matrices and system matrices plays an important role when one uses parameter-dependent Lyapunov functional handling systems with polytopic type uncertainties. The delay-dependent robust stability problem for systems with polytopic type uncertainties is discussed by using parameter-dependent Lyapunov functional. The derivative term in the derivative of Lyapunov functional is reserved and the free weighting matrices are employed to express the relationship between die terms in the system equation such that the Lyapunov matrices are not involved in any product terms with the system matrices. In addition, the relationships between the terms in the Leibniz Newton formula are also described by some free weighting matrices and some delay-dependent stability conditions are derived. Numerical examples demonstrate that the proposed criteria are more effective than the previous results.展开更多
This paper focuses on the influence of the disturbance rejection rate(DRR)and parasitic loop parameters on the stability domain of the roll-pitch seeker's guidance system.The DRR models of the roll-pitch seeker ca...This paper focuses on the influence of the disturbance rejection rate(DRR)and parasitic loop parameters on the stability domain of the roll-pitch seeker's guidance system.The DRR models of the roll-pitch seeker caused by different types of disturbance torques and the scale deviation of different sensors are established.The optimal DRR model of the roll-pitch seeker,which contains the scale deviation model,is proposed by formula derivation.The model of the roll-pitch seeker's guidance system is established and equivalently simplified by the dimensionless method.The Lyapunov stability criterion for stability analysis of the guidance system is given by means of the passivity theorem and related definitions and lemmas.A simplified model of the roll-pitch seeker's guidance system,which is suitable for the Lyapunov stability criterion,is established by formula derivation and equivalent transformation.Three conditions that satisfy the Lyapunov stability criterion are obtained.Mathematical simulation with Nyquist plots is used to analyze the influence of different DRR parameters on the stability domain of the roll-pitch seeker's guidance system.Simulation results of this paper can provide reference for the stability analysis of systems related to the roll-pitch seeker.展开更多
Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter...Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter proof method,and some sufficient conditions for the global asymptotic stability of the equilibrium point are obtained through the combination of a suitable Lyapunov function and an algebraic inequality technique.展开更多
In this paper, we discuss a mathematical model of malaria transmission between vector and host population. We study the basic qualitative properties of the model, the boundedness and non-negativity, calculate all equi...In this paper, we discuss a mathematical model of malaria transmission between vector and host population. We study the basic qualitative properties of the model, the boundedness and non-negativity, calculate all equilibria, and prove the global stability of them and the behaviour of the model when the basic reproduction ratio R0 is greater than one or less than one. The global stability of equilibria is established by using Lyapunov method. Graphical representations of the calculated parameters and their effects on disease eradication are provided.展开更多
In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start wi...In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start with a deterministic model, then add random perturbations on the contact rate using white noise to obtain a stochastic model. We first show that the delayed stochastic differential equation that describes the model has a unique global positive solution for any positive initial value. Under the condition R<sub>0</sub> ≤ 1, we prove the almost sure asymptotic stability of the disease-free equilibrium of the model.展开更多
This paper addresses the coexistence and local stability of multiple equilibrium points for fractional-order Cohen-Grossberg neural networks(FOCGNNs)with time delays.Based on Brouwer's fixed point theorem,sufficie...This paper addresses the coexistence and local stability of multiple equilibrium points for fractional-order Cohen-Grossberg neural networks(FOCGNNs)with time delays.Based on Brouwer's fixed point theorem,sufficient conditions are established to ensure the existence of Πi=1^n(2Ki+1)equilibrium points for FOCGNNs.Through the use of Hardy inequality,fractional Halanay inequality,and Lyapunov theory,some criteria are established to ensure the local Lagrange stability and the local Lyapunov asymptotical stability of Πi=1^n(Ki+1)equilibrium points for FOCGNNs.The obtained results encompass those of integer-order Hopfield neural networks with or without delay as special cases.The activation functions are nonlinear and nonmonotonic.There could be many corner points in this general class of activation functions.The structure of activation functions makes FOCGNNs could have a lot of stable equilibrium points.Coexistence of multiple stable equilibrium points is necessary when neural networks come to pattern recognition and associative memories.Finally,two numerical examples are provided to illustrate the effectiveness of the obtained results.展开更多
In this paper, based on Cobb-Douglas production function, the structural stability of the supply chain system are analyzed by employing Lyapunov criteria. That the supply chain system structure, with the variance of t...In this paper, based on Cobb-Douglas production function, the structural stability of the supply chain system are analyzed by employing Lyapunov criteria. That the supply chain system structure, with the variance of the rate of re-production input funding, becomes unstable is proved. Noticeably, the solutions shows that when the optimal combination of input parameter element, the qualitative properties of supply chain system change and the supply chain system becomes unstable.展开更多
With the occurrence of burst interference,bit error rate( BER) stability of the wireless communication system( WCS) always degrades significantly. To cope with it,a stability control algorithm is proposed,utilizing th...With the occurrence of burst interference,bit error rate( BER) stability of the wireless communication system( WCS) always degrades significantly. To cope with it,a stability control algorithm is proposed,utilizing the stability theory of switched systems,which is specifically applicable for multi-parameter adaptive WCS with spectrum sensing ability,and it is capable of stabilizing BER within a reasonable range. Firstly,WCS is modeled as a switched system. Then,based on the multi-Lyapunov function,controlling rules are presented to enable the switched system to satisfy stable condition asymptotically. Finally,analysis and numerical simulation results demonstrate that the switched WCS with the proposed controlling rules is superior to conventional power-controlled WCS with or without state feedback control in terms of stability performance.展开更多
The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that th...The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that the filtering error system remains robustly stable, and has a L 1 performance constraint and pole constraint in a disk. The new robust L 1 performance criteria and regional pole placement condition are obtained via parameter-dependent Lyapunov functions method. Upon the proposed multiobjective performance criteria and by means of LMI technique, both full-order and reduced-order robust L 1 filter with suitable dynamic behavior can be obtained from the solution of convex optimization problems. Compared with earlier result in the quadratic framework, this approach turns out to be less conservative. The efficiency of the proposed technique is demonstrated by a numerical example.展开更多
Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is ...Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is to determine a stable linear filter such that the filtering error system possesses a prescribed L2-L∞ noise attenuation level and expected poles location. The filtering strategies are based on parameter-dependent Lyapunov stability results to derive new robust L2-L∞ performance criteria and the regional pole placement conditions. From the proposed multi-objective performance criteria, we derive sufficient conditions for the existence of robust L2-L∞ filters with pole constraint in a disk, and cast the filter design into a convex optimization problem subject to a set of linear matrix inequality constraints. This filtering method exhibits less conservativeness than previous results in the quadratic framework. The advantages of the filter design procedures are demonstrated by means of numerical examples.展开更多
This paper is concerned with the stability analysis of nonlinear third order ordinary differential equations of the form . We construct a suitable Lyapunov function for this purpose and show that it guarantees asympto...This paper is concerned with the stability analysis of nonlinear third order ordinary differential equations of the form . We construct a suitable Lyapunov function for this purpose and show that it guarantees asymptotic stability. Our approach is to first consider the linear version of the above ODE, by taking and study its Lyapunov stability. Exploiting the similarities between linear and nonlinear ODE, we construct a Lyapunov function for the stability analysis of the given nonlinear differential equation.展开更多
A design method for controllers and a comprehensive stability analysis for an acrobat based on Lyapunov functions are presented. Three control laws based on three Lyapunov functions are designed to increase the energy...A design method for controllers and a comprehensive stability analysis for an acrobat based on Lyapunov functions are presented. Three control laws based on three Lyapunov functions are designed to increase the energy so as to move the acrobot into the unstable inverted equilibrium position, and solve the problem of posture and energy. The concept of a non-smooth Lyapunov function is employed to analyze the stability of the whole system. The validity of this strategy is demonstrated by simulations.展开更多
The dynamics characteristics of the robotic arm system are usually highly nonlinear and strongly coupling,which will make it difficult to analyze the stability by the methods of solving kinetic equations or constructi...The dynamics characteristics of the robotic arm system are usually highly nonlinear and strongly coupling,which will make it difficult to analyze the stability by the methods of solving kinetic equations or constructing Lyapunov function,especially,these methods cannot calculate the quantitative relationship between mechanical structures or control input and dynamics parameters and stability.The theoretical analysis process from symbol dynamics modeling of the robotic arm system to the movement stability is studied by using the concept of Lyapunov exponents method. To verify the algorithm effectiveness,the inner relation between its joint input torque and stability or chaotic and stable motion of the 2-DOF robotic arm system is analyzed quantitatively. As compared with its counterpart of Lyapunov's direct method,the main advantage of the concept of Lyapunov exponents is that the methods for calculating the exponents are constructive to provide an effective analysis tool for analyzing robotic arm system movement stability of nonlinear systems.展开更多
文摘For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic description or multi-model description in that the weighting coef-ficients have respective meanings. They, however, have stability aspect in common. By adopting astability condition for polytopic systems obtained via PDLF, and combining the properties of T-Sfuzzy systems, new results are given in this paper. An example shows that by applying the newresults, the stability conditions that can be distinguished are less conservative.
基金supported by the National Natural Science Foundation of China (6090405161021002)
文摘The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.
基金Specialized Research Fund for the Doctoral Program of Higher Education ( No. 20090092110051)the Key Project of Chinese Ministry of Education ( No. 108060)the National Natural Science Foundation of China ( No. 51076027, 51036002, 51106024)
文摘An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(61703153)the Natural Science Foundation of Hunan Province(2018JJ4075)
文摘This paper investigates the stability problem for time-varying delay systems.To obtain a larger delay bound,this paper uses the second-order canonical Bessel-Legendre(BL)inequality.Secondly,using four couples of integral terms in the augmented Lyapunov-Krasovskii function(LKF)to enhance the relationship between integral functionals and other vectors.Furthermore,unlike the construction of the traditional LKF,a novel augmented LKF is constructed with two new delayproduct-type terms,which adds more state information and leads to less conservative results.Finally,two numerical examples are provided to demonstrate the effectiveness and the significant improvement of the proposed stability criteria.
基金This work was partially supported by the National Natural Science Foundation of China(No.60504008).
文摘The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional approach combining with a new method of introducing some relaxation matrices and tuning parameters, which can be chosen properly to lead to a less conservative result. First, a sufficient condition is proposed for robust stability of the autonomic system; next, the sufficient conditions of the robust stabilization controller and the existence condition of sliding mode are developed. The results are given in terms of linear matrix inequalities (LMIs), which can be solved via efficient interior-point algorithms. A numerical example is presented to illustrate the feasibility and advantages of the proposed design scheme.
文摘This paper deals with the stability of systems with discontinuous righthand side (with solutions in Filippov's sense) via locally Lipschitz continuous and regular vector Lyapunov functions. A new type of “set-valued derivative” of vector Lyapunov functions is introduced, some generalized comparison principles on discontinuous systems are shown. Furthermore, Lyapunov stability theory is developed for a class of discontinuous systems based on locally Lipschitz continuous and regular vector Lyapunov functions.
文摘The separation of the Lyapunov matrices and system matrices plays an important role when one uses parameter-dependent Lyapunov functional handling systems with polytopic type uncertainties. The delay-dependent robust stability problem for systems with polytopic type uncertainties is discussed by using parameter-dependent Lyapunov functional. The derivative term in the derivative of Lyapunov functional is reserved and the free weighting matrices are employed to express the relationship between die terms in the system equation such that the Lyapunov matrices are not involved in any product terms with the system matrices. In addition, the relationships between the terms in the Leibniz Newton formula are also described by some free weighting matrices and some delay-dependent stability conditions are derived. Numerical examples demonstrate that the proposed criteria are more effective than the previous results.
基金supported by the Defense Science and Technology Key Laboratory Fund of Luoyang Electro-optical Equipment Institute,Aviation Industry Corporation of China(6142504200108)。
文摘This paper focuses on the influence of the disturbance rejection rate(DRR)and parasitic loop parameters on the stability domain of the roll-pitch seeker's guidance system.The DRR models of the roll-pitch seeker caused by different types of disturbance torques and the scale deviation of different sensors are established.The optimal DRR model of the roll-pitch seeker,which contains the scale deviation model,is proposed by formula derivation.The model of the roll-pitch seeker's guidance system is established and equivalently simplified by the dimensionless method.The Lyapunov stability criterion for stability analysis of the guidance system is given by means of the passivity theorem and related definitions and lemmas.A simplified model of the roll-pitch seeker's guidance system,which is suitable for the Lyapunov stability criterion,is established by formula derivation and equivalent transformation.Three conditions that satisfy the Lyapunov stability criterion are obtained.Mathematical simulation with Nyquist plots is used to analyze the influence of different DRR parameters on the stability domain of the roll-pitch seeker's guidance system.Simulation results of this paper can provide reference for the stability analysis of systems related to the roll-pitch seeker.
基金Research supported by the National Natural Science Foundation of China(12271220)postgraduate research and practice innovation program of Jiangsu Province(KYCX24-3010)。
文摘Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter proof method,and some sufficient conditions for the global asymptotic stability of the equilibrium point are obtained through the combination of a suitable Lyapunov function and an algebraic inequality technique.
基金Supported by National Natural Science Foundation of China (60474002, 60674041) and National High Technology Research and Development Program of China (863 Program) (2006AA04Z173)
文摘In this paper, we discuss a mathematical model of malaria transmission between vector and host population. We study the basic qualitative properties of the model, the boundedness and non-negativity, calculate all equilibria, and prove the global stability of them and the behaviour of the model when the basic reproduction ratio R0 is greater than one or less than one. The global stability of equilibria is established by using Lyapunov method. Graphical representations of the calculated parameters and their effects on disease eradication are provided.
文摘In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start with a deterministic model, then add random perturbations on the contact rate using white noise to obtain a stochastic model. We first show that the delayed stochastic differential equation that describes the model has a unique global positive solution for any positive initial value. Under the condition R<sub>0</sub> ≤ 1, we prove the almost sure asymptotic stability of the disease-free equilibrium of the model.
基金Project supported by the Natural Science Foundation of Zhejiang Province of China(Grant Nos.LY18F030023,LY17F030016,LQ18F030015,and LY18F020028)the National Natural Science Foundation of China(Grant Nos.61503338,61773348,and 61972354).
文摘This paper addresses the coexistence and local stability of multiple equilibrium points for fractional-order Cohen-Grossberg neural networks(FOCGNNs)with time delays.Based on Brouwer's fixed point theorem,sufficient conditions are established to ensure the existence of Πi=1^n(2Ki+1)equilibrium points for FOCGNNs.Through the use of Hardy inequality,fractional Halanay inequality,and Lyapunov theory,some criteria are established to ensure the local Lagrange stability and the local Lyapunov asymptotical stability of Πi=1^n(Ki+1)equilibrium points for FOCGNNs.The obtained results encompass those of integer-order Hopfield neural networks with or without delay as special cases.The activation functions are nonlinear and nonmonotonic.There could be many corner points in this general class of activation functions.The structure of activation functions makes FOCGNNs could have a lot of stable equilibrium points.Coexistence of multiple stable equilibrium points is necessary when neural networks come to pattern recognition and associative memories.Finally,two numerical examples are provided to illustrate the effectiveness of the obtained results.
基金Supported by the National Excellent Youth Science Foundation of China (No.79725002)
文摘In this paper, based on Cobb-Douglas production function, the structural stability of the supply chain system are analyzed by employing Lyapunov criteria. That the supply chain system structure, with the variance of the rate of re-production input funding, becomes unstable is proved. Noticeably, the solutions shows that when the optimal combination of input parameter element, the qualitative properties of supply chain system change and the supply chain system becomes unstable.
基金Supported by the National Natural Science Foundation of China(No.61572254,61301103)
文摘With the occurrence of burst interference,bit error rate( BER) stability of the wireless communication system( WCS) always degrades significantly. To cope with it,a stability control algorithm is proposed,utilizing the stability theory of switched systems,which is specifically applicable for multi-parameter adaptive WCS with spectrum sensing ability,and it is capable of stabilizing BER within a reasonable range. Firstly,WCS is modeled as a switched system. Then,based on the multi-Lyapunov function,controlling rules are presented to enable the switched system to satisfy stable condition asymptotically. Finally,analysis and numerical simulation results demonstrate that the switched WCS with the proposed controlling rules is superior to conventional power-controlled WCS with or without state feedback control in terms of stability performance.
文摘The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that the filtering error system remains robustly stable, and has a L 1 performance constraint and pole constraint in a disk. The new robust L 1 performance criteria and regional pole placement condition are obtained via parameter-dependent Lyapunov functions method. Upon the proposed multiobjective performance criteria and by means of LMI technique, both full-order and reduced-order robust L 1 filter with suitable dynamic behavior can be obtained from the solution of convex optimization problems. Compared with earlier result in the quadratic framework, this approach turns out to be less conservative. The efficiency of the proposed technique is demonstrated by a numerical example.
文摘Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is to determine a stable linear filter such that the filtering error system possesses a prescribed L2-L∞ noise attenuation level and expected poles location. The filtering strategies are based on parameter-dependent Lyapunov stability results to derive new robust L2-L∞ performance criteria and the regional pole placement conditions. From the proposed multi-objective performance criteria, we derive sufficient conditions for the existence of robust L2-L∞ filters with pole constraint in a disk, and cast the filter design into a convex optimization problem subject to a set of linear matrix inequality constraints. This filtering method exhibits less conservativeness than previous results in the quadratic framework. The advantages of the filter design procedures are demonstrated by means of numerical examples.
文摘This paper is concerned with the stability analysis of nonlinear third order ordinary differential equations of the form . We construct a suitable Lyapunov function for this purpose and show that it guarantees asymptotic stability. Our approach is to first consider the linear version of the above ODE, by taking and study its Lyapunov stability. Exploiting the similarities between linear and nonlinear ODE, we construct a Lyapunov function for the stability analysis of the given nonlinear differential equation.
基金Project (60425310) supported by the National Science Foundation of China project (2001AA4422200) supported by theTeaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of the Ministry of Education of China
文摘A design method for controllers and a comprehensive stability analysis for an acrobat based on Lyapunov functions are presented. Three control laws based on three Lyapunov functions are designed to increase the energy so as to move the acrobot into the unstable inverted equilibrium position, and solve the problem of posture and energy. The concept of a non-smooth Lyapunov function is employed to analyze the stability of the whole system. The validity of this strategy is demonstrated by simulations.
基金Supported by the National Natural Science Foundation of China(No.51405243,51575283)
文摘The dynamics characteristics of the robotic arm system are usually highly nonlinear and strongly coupling,which will make it difficult to analyze the stability by the methods of solving kinetic equations or constructing Lyapunov function,especially,these methods cannot calculate the quantitative relationship between mechanical structures or control input and dynamics parameters and stability.The theoretical analysis process from symbol dynamics modeling of the robotic arm system to the movement stability is studied by using the concept of Lyapunov exponents method. To verify the algorithm effectiveness,the inner relation between its joint input torque and stability or chaotic and stable motion of the 2-DOF robotic arm system is analyzed quantitatively. As compared with its counterpart of Lyapunov's direct method,the main advantage of the concept of Lyapunov exponents is that the methods for calculating the exponents are constructive to provide an effective analysis tool for analyzing robotic arm system movement stability of nonlinear systems.