期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Intercomparison of different physics schemes in the WRF model over the Asian summer monsoon region 被引量:3
1
作者 QUE Lin-Jing QUE Wei-Lun FENG Jin-Ming 《Atmospheric and Oceanic Science Letters》 CSCD 2016年第3期169-177,共9页
Enhancing the ability of the WRF model in simulating a large area covering the West Pacific Ocean, China's Mainland, and the East Indian Ocean is very important to improve prediction of the East Asian monsoon clim... Enhancing the ability of the WRF model in simulating a large area covering the West Pacific Ocean, China's Mainland, and the East Indian Ocean is very important to improve prediction of the East Asian monsoon climate. The objective of this study is to identify a reasonable configuration of physical parameterization schemes to simulate the precipitation and temperature in this large area. The Mellor-Yamada-Janjic (MYJ) and Yonsei University (YSU) PBL schemes, the WSM3 and WSM5 microphysics schemes, and the Betts-Miller-Janjic (BMJ) and Tiedtke cumulus schemes are compared through simulation of the regional climate of summer 2008. All cases exhibit a similar spatial distribution of temperature as observed, and the spatial correlation coefficients are all higher than 0.95. The cases combining MY J, WSM3/WSM5, and BMJ have the smallest biases of temperature. The choice of PBL scheme has a significant effect on precipitation in such a large area. The cases with MYJ reproduce a better distribution of rain belts, while YSU strongly overestimates the precipitation intensity. The precipitation simulated using WSM3 is similar to that using WSM5. The BMJ cumulus scheme combined with the MYJ PBL scheme has a smaller bias of precipitation. However, the Tiedtke scheme reproduces the precipitation pattern better, especially over the ITCZ. 展开更多
关键词 WRF model PRECIPITATION temperature PBL scheme microphysics scheme cumulus parameterizationscheme
下载PDF
Development and test of a multifactorial parameterization scheme of land surface aerodynamic roughness length for flat land surfaces with short vegetation 被引量:3
2
作者 ZHANG Qiang YAO Tong YUE Ping 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第2期281-295,共15页
Aerodynamic roughness length is an important physical parameter in atmospheric numerical models and microme- teorological calculations, the accuracy of which can affect numerical model performance and the level of mic... Aerodynamic roughness length is an important physical parameter in atmospheric numerical models and microme- teorological calculations, the accuracy of which can affect numerical model performance and the level of micrometeorological computations. Many factors influence the aerodynamic roughness length, but formulas for its parameterization often only con- sider the action of a single factor. This limits their adaptive capacity and often introduces considerable errors in the estimation of land surface momentum flux (friction velocity). In this study, based on research into the parameterization relations between aerodynamic roughness length and influencing factors such as windrow conditions, thermodynamic characteristics of the sur- face layer, natural rhythm of vegetation growth, ecological effects of interannual fluctuations of precipitation, and vegetation type, an aerodynamic roughness length parameterization scheme was established. This considers almost all the factors that af- fect aerodynamic roughness length on flat land surfaces with short vegetation. Furthermore, using many years' data recorded at the Semi-Arid Climate and Environment Observatory of Lanzhou University, a comparative analysis of the application of the proposed parameterization scheme and other experimental schemes was performed. It was found that the error in the friction velocity estimated by the proposed parameterization scheme was considerably less than that estimated using a constant aero- dynamic roughness length and by the other parameterization schemes. Compared with the friction velocity estimated using a constant aerodynamic roughness length, the correlation coefficient with the observed friction velocity increased from 0.752 to 0.937, and the standard deviation and deviation decreased by about 20% and 80%, respectively. Its mean value differed from the observed value by only 0.004 m s-l and the relative error was only about 1.6%, which indicates a significant decrease in the estimation error of surface-layer momentum flux. The test results show that the multifactorial universal parameterization scheme of aerodynamic roughness length for flat land surfaces with short vegetation can offer a more scientific parameteriza- tion scheme for numerical atmospheric models. 展开更多
关键词 Flat land surface with short vegetation Multifactorial influence Aerodynamic roughness length parameterizationscheme Friction velocity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部