An extraction method of the component parameter values of an enhancement-mode InGaP/AIGaAs/In-GaAs PHEMT small signal equivalent circuit is presented,and these component parameter values are extracted by using the EEH...An extraction method of the component parameter values of an enhancement-mode InGaP/AIGaAs/In-GaAs PHEMT small signal equivalent circuit is presented,and these component parameter values are extracted by using the EEHEMT1 model of IC-CAP software. The extraction results are verified by ADS software,and the DC I-V curves and S parameters simulated by ADS are basically accordant with those of the test results. These results indicate that the EEHEMT1 model can be used for extracting the component parameters of an enhancement-mode PHEMT.展开更多
An accurate and novel small-signal equivalent circuit model for GaN high-electron-mobility transistors(HEMTs)is proposed,which considers a dual-field-plate(FP)made up of a gate-FP and a source-FP.The equivalent circui...An accurate and novel small-signal equivalent circuit model for GaN high-electron-mobility transistors(HEMTs)is proposed,which considers a dual-field-plate(FP)made up of a gate-FP and a source-FP.The equivalent circuit of the overall model is composed of parasitic elements,intrinsic transistors,gate-FP,and source-FP networks.The equivalent circuit of the gate-FP is identical to that of the intrinsic transistor.In order to simplify the complexity of the model,a series combination of a resistor and a capacitor is employed to represent the source-FP.The analytical extraction procedure of the model parameters is presented based on the proposed equivalent circuit.The verification is carried out on a 4×250μm GaN HEMT device with a gate-FP and a source-FP in a 0.45μm technology.Compared with the classic model,the proposed novel small-signal model shows closer agreement with measured S-parameters in the range of 1.0 to 18.0 GHz.展开更多
In this work,forward current voltage characteristics for multi-quantum wells Al_(0.33)Ga_(0.67)As Schottky diode were measured at temperature ranges from 100 to 300 K.The main parameters of this Schottky diode,such as...In this work,forward current voltage characteristics for multi-quantum wells Al_(0.33)Ga_(0.67)As Schottky diode were measured at temperature ranges from 100 to 300 K.The main parameters of this Schottky diode,such as the ideality factor,barrier height,series resistance and saturation current,have been extracted using both analytical and heuristics methods.Differential evolution(DE),particle swarm optimization(PSO)and artificial bee colony(ABC)have been chosen as candidate heuristics algorithms,while Cheung technic was selected as analytical extraction method.The obtained results show clearly the high performance of DE algorithms in terms of parameters accuracy,convergence speed and robustness.展开更多
The mathematical modeling of solar cells is essential for any optimization operation of the efficiency or the diagnosis of photovoltaic generator. The photovoltaic module is generally represented by an equivalent circ...The mathematical modeling of solar cells is essential for any optimization operation of the efficiency or the diagnosis of photovoltaic generator. The photovoltaic module is generally represented by an equivalent circuit whose parameters are experimentally calculated by using the characteristic current-tension, I-V. The precise determination of these parameters stays a challenge for the researchers, making to a big difference in the models and the digital methods dedicated to their characterizations. In the present paper, We are interested to characterize the parameters of single diode and two diodes models, in order to plan the behavior of the photovoltaic generator under real functioning conditions. We developed an identification method of the parameters using Newton Raphson method by using the software Matlab/Simulink. This method is the faster technique which allows the identification of several parameters and can be used in real time applications. The results of the proposed method show an accordance with the experimental and simulated characteristics of photovoltaic generator.展开更多
The method extracting the electromagnetic parameters from scattering coefficients was studied in this paper. The Support Vector Machine (SVM) method is used to solve the inverse problem of parameters extraction. The m...The method extracting the electromagnetic parameters from scattering coefficients was studied in this paper. The Support Vector Machine (SVM) method is used to solve the inverse problem of parameters extraction. The mapping relationship is set up by calculating a large number of S pa-rameters from the samples with different permittivity by using transmission line theory. The simulated data set is used as training data set for SVM. After the training, the SVM is used to predict the permittivity of material from the scattering coefficients.展开更多
Extraction of accurate Photo Voltaic (PV) model parameters is a challenging task for PV simulator developers. To mitigate this challenging task a novel approach using Gravitational Search Algorithm (GSA) for accurate ...Extraction of accurate Photo Voltaic (PV) model parameters is a challenging task for PV simulator developers. To mitigate this challenging task a novel approach using Gravitational Search Algorithm (GSA) for accurate extraction of PV model parameters is proposed in this paper. GSA is a population based heuristic optimization method which depends on the law of gravity and mass interactions. In this optimization method, the searcher agents are collection of masses which interact with each other using laws of gravity and motion of Newton. The developed PV model utilizes mathematical equations and is described through an equivalent circuit model comprising of a current source, a diode, a series resistor and a shunt resistor including the effect of changes in solar irradiation and ambient temperature. The optimal values of photo-current, diode ideality factor, series resistance and shunt resistance of the developed PV model are obtained by using GSA. The simulations of the characteristic curves of PV modules (SM55, ST36 and ST40) are carried out using MATLAB/Simulink environment. Results obtained using GSA are compared with Differential Evolution (DE), which shows that GSA based parameters are better optimal when compared to DE.展开更多
Several parameters of a commercial Si-based Schottky barrier diode (SBD) with unknown metal material and semiconductor-type have been investigated in this work from dark forward and reverse I-V characteristics in the ...Several parameters of a commercial Si-based Schottky barrier diode (SBD) with unknown metal material and semiconductor-type have been investigated in this work from dark forward and reverse I-V characteristics in the temperature (T) range of [274.5 K - 366.5 K]. Those parameters include the reverse saturation current (I<sub>s</sub>), the ideality factor (n), the series and the shunt resistances (R<sub>s</sub> and R<sub>sh</sub>), the effective and the zero bias barrier heights (Φ<sub>B</sub> and Φ<sub>B0</sub>), the product of the electrical active area (A) and the effective Richardson constant (A**), the built-in potential (V<sub>bi</sub>), together with the semiconductor doping concentration (N<sub>A</sub> or N<sub>D</sub>). Some of them have been extracted by using two or three different methods. The main features of each approach have been clearly stated. From one parameter to another, results have been discussed in terms of structure performance, comparison on one another when extracted from different methods, accordance or discordance with data from other works, and parameter’s temperature or voltage dependence. A comparison of results on Φ<sub>B</sub>, ΦB0</sub>, n and N<sub>A</sub> or N<sub>D</sub> parameters with some available data in literature for the same parameters, has especially led to clear propositions on the identity of the analyzed SBD’s metal and semiconductor-type.展开更多
Accurate PV system simulators are implemented with expensive software platforms using paid irradiance data.The main purpose of this paper is to develop and validate a PV system simulator,beginning with a solar cell pa...Accurate PV system simulators are implemented with expensive software platforms using paid irradiance data.The main purpose of this paper is to develop and validate a PV system simulator,beginning with a solar cell parameter extraction model,then test and validate long-termIrradiance data using free online source(Typical Meteorological Year TMY in(PVGIS)European website),and finally building full solar generator simulator to run in working real conditions.Comparing results with Accurate Paid PV simulators(which use theMuneer model)showed good accuracy of the proposed simulator.Work flow starts with the Irradiance model’s data processing,then solar cell 5 parameters model data processing(to extract cell parameters),and finally full system simulator.MATLAB coding programs in real working conditions are used for simulation.Results of solar cell parameter extraction show 99.6%to 99.99%matching with data sheet and cell performance under standard test conditions.Systemmodel simulation output shows 8%less yearly generated energy compared to the PVGIS 2022 long-term simulation(hourly basis(one-year time)).This is due to incident energy variations(between the years 2016 and 2022)of 4.02%.The novelty of the algorithm is the methodology,as it tests irradiance data on an hourly basis and validates results for a whole continuous year.Also,the 5-parameter solar cell model is used to be validated in long term analysis,not only STC conditions and could be applied on any PV solar cell.The algorithm and block diagramused are scalable,modular,and interchangeable with similarmodels to be tested.This simulator could test severalmethods andmodels in solar pv technology.展开更多
This paper proposes a design and fine-tuning method for mixed electric and magnetic coupling filters.It derives the quantitative relationship between the coupling coefficients(electric and magnetic coupling,i.e.,EC an...This paper proposes a design and fine-tuning method for mixed electric and magnetic coupling filters.It derives the quantitative relationship between the coupling coefficients(electric and magnetic coupling,i.e.,EC and MC)and the linear coefficients of frequencydependent coupling for the first time.Different from the parameter extraction technique using the bandpass circuit model,the proposed approach explicitly relatesEC and MC to the coupling matrix model.This paper provides a general theoretic framework for computer-aided design and tuning of a mixed electric and magnetic coupling filter based on coupling matrices.An example of a 7th-order coaxial combline filter design is given in the paper,verifying the practical value of the approach.展开更多
We improve the genetic algorithm by combining it with a simulated annealing algorithm. The improved algorithm is used to extract model parameters of SOI MOSFETs, which are fabricated with standard 1.2μm CMOS/SOI tech...We improve the genetic algorithm by combining it with a simulated annealing algorithm. The improved algorithm is used to extract model parameters of SOI MOSFETs, which are fabricated with standard 1.2μm CMOS/SOI technology developed by the Institute of Microelectronics of the Chinese Academy of Sciences. The simulation results using this model are in excellent agreement with experimental results. The precision is improved noticeably compared to commercial software. This method requires neither a deeper understanding of SOl MOSFETs model nor more complex computations than conventional algorithms used by commercial software. Comprehensive verification shows that this model is applicable to a very large range of device sizes.展开更多
A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance i...A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance into consideration,is first determined based on the device's physical structure. The photodetector's S parameters are then on-wafer measured, and the measured raw data are processed with further calibration. A genetic algorithm is used to fit the measured data, thereby allowing us to calculate each parameter value of the model. Experimental resuits show that the modeled parameters are well matched to the measurements in a frequency range from 130MHz to 20GHz, and the proposed method is proved feasible. This model can give an exact description of the photodetector chip's high frequency performance,which enables an effective circuit-level prediction for photodetector and optoelectronic integrated circuits.展开更多
A novel equivalent circuit model for a GaAs PIN diode is presented based on physical analysis. The diode is divided into three parts: the p^+ n^- junction, the i-layer, and the n^- n^+ junction, which are modeled s...A novel equivalent circuit model for a GaAs PIN diode is presented based on physical analysis. The diode is divided into three parts: the p^+ n^- junction, the i-layer, and the n^- n^+ junction, which are modeled separately. The entire model is then formed by combining the three sub-models. In this way, the model's accuracy is greatly enhanced. Furthermore, the corresponding parameter extraction method is easy, requiring no rigorous experiment or measurement. To validate this newly proposed model,fifteen groups of diodes are fabricated. Measurement shows that the model exactly represents behavior of GaAs PIN diodes under both forward and reversely biased conditions.展开更多
Based on the 65nm CMOS process,a novel parallel RLC coupling interconnect analytical model is presented synthetically considering parasitical capacitive and parasitical inductive effects. Applying function approximati...Based on the 65nm CMOS process,a novel parallel RLC coupling interconnect analytical model is presented synthetically considering parasitical capacitive and parasitical inductive effects. Applying function approximation and model order-reduction to the model, we derive a closed-form and time-domain waveform for the far-end crosstalk of a victim line under ramp input transition. For various interconnect coupling sizes, the proposed RLC coupling analytical model enables the estimation of the crosstalk voltage within 2.50% error compared with Hspice simulation in a 65nm CMOS process. This model can be used in computer-aided-design of nanometer SOCs.展开更多
A novel parameter extraction technique suitable f or short channel length lightly-doped-drain (LDD) MOSFET's is proposed which seg ments the total gate bias range,and executes the linear regression in every subs ...A novel parameter extraction technique suitable f or short channel length lightly-doped-drain (LDD) MOSFET's is proposed which seg ments the total gate bias range,and executes the linear regression in every subs ections,yielding the gate bias dependent parameters,such as effective channel le ngth,parasitic resistance,and mobility,etc.This method avoids the gate bias rang e optimization,and retains the accuracy and simplicity of linear regression.The extracted gate bias dependent parameters are implemented in the compact I-V model which has been proposed for deep submicron LDD MOSFET's.The good agreemen ts between simulations and measurements of the devices on 0.18μm CMOS technolo gy indicate the effectivity of this technique.展开更多
A novel parameter extraction method with rational functions is presented for the 2-πequivalent circuit model of RF CMOS spiral inductors. The final S-parameters simulated by the circuit model closely match experiment...A novel parameter extraction method with rational functions is presented for the 2-πequivalent circuit model of RF CMOS spiral inductors. The final S-parameters simulated by the circuit model closely match experimental data. The extraction strategy is straightforward and can be easily implemented as a CAD tool to model spiral inductors. The resulting circuit models will be very useful for RF circuit designers.展开更多
A sub circuit model for VDMOS is built according to its physical structure.Parameters and formulas describing the device are also derived from this model.Comparing to former results,this model avoids too many technic...A sub circuit model for VDMOS is built according to its physical structure.Parameters and formulas describing the device are also derived from this model.Comparing to former results,this model avoids too many technical parameters and simplify the sub circuit efficiently.As a result of numeric computation,this simple model with clear physical conception demonstrates excellent agreements between measured and modeled response (DC error within 5%,AC error within 10%).Such a model is now available for circuit simulation and parameter extraction.展开更多
This paper presents an accurate small-signal model for multi-gate GaAs pHEMTs in switching-mode.The extraction method for the proposed model is developed.A 2-gate switch structure is fabricated on a commercial 0.5μm ...This paper presents an accurate small-signal model for multi-gate GaAs pHEMTs in switching-mode.The extraction method for the proposed model is developed.A 2-gate switch structure is fabricated on a commercial 0.5μm AlGaAs/GaAs pHEMT technology to verify the proposed model.Excellent agreement has been obtained between the measured and simulated results over a wide frequency range.展开更多
We design a hybrid integrated chaotic semiconductor laser with short-cavity optical feedback.It can be assembled in a commercial butterfly shell with just three micro-lenses.One of them is coated by a transflective fi...We design a hybrid integrated chaotic semiconductor laser with short-cavity optical feedback.It can be assembled in a commercial butterfly shell with just three micro-lenses.One of them is coated by a transflective film to provide the optical feedback for chaos generation while insuring regular laser transmission.We prove the feasibility of the chaos generation in this compact structure and provide critical external parameters for the fabrication by theoretical simulations.Rather than the usual changeless internal parameters used in previous simulation research,we extract the real parameters of the chip by experiment.Moreover,the maps of the largest Lyapunov exponent with varying bias current and feedback intensity Kap demonstrate the dynamic characteristics under different external-cavity conditions.Each laser chip has its own optimal external cavity length(L)and feedback intensity(Kap)to generate chaos because of the different internal parameters.We have acquired two ranges of optimal parameters(L=4 mm,0.12〈Kap〈0.2 and L=5 mm,0.07〈Kap〈0.12)for two different chips.展开更多
Parameter extraction is an important step for circuit simulation methods that are based on physical models of semiconductor devices. A novel physical parameter extraction approach for Schottky diodes is proposed in th...Parameter extraction is an important step for circuit simulation methods that are based on physical models of semiconductor devices. A novel physical parameter extraction approach for Schottky diodes is proposed in this paper. By employing a set of analytical formulas, this approach extracts all of the necessary physical parameters of the diode chip in a unique way. It then extracts the package parasitic parameters with a curve-fitting method. To validate the proposed approach, a model HSMS-282 c commercial Schottky diode is taken as an example. Its physical parameters are extracted and used to simulate the diode's electrical characteristics. The simulated results based on the extracted parameters are compared with the measurements and a good agreement is obtained, which verifies the feasibility and accuracy of the proposed approach.展开更多
A model of monolithic transformers is presented, which is analyzed with characteristic functions. A closed- form analytical approach to extract all the model parameters for the equivalent circuit of Si-based on-chip t...A model of monolithic transformers is presented, which is analyzed with characteristic functions. A closed- form analytical approach to extract all the model parameters for the equivalent circuit of Si-based on-chip transformers is proposed. A novel de-coupling technique is first developed to reduce the complexity in the Y parameters for the transformer, and the model parameters can then be extracted analytically by a set of characteristic functions. Simulation based on the extracted parameters has been carried out for transformers with different structures, and good accuracy is obtained compared to a 3-demensional full-wave numerical electro- magnetic field solver. The presented approach will be very useful to provide a scalable and wide-band compact circuit model for Si-based RF transformers.展开更多
文摘An extraction method of the component parameter values of an enhancement-mode InGaP/AIGaAs/In-GaAs PHEMT small signal equivalent circuit is presented,and these component parameter values are extracted by using the EEHEMT1 model of IC-CAP software. The extraction results are verified by ADS software,and the DC I-V curves and S parameters simulated by ADS are basically accordant with those of the test results. These results indicate that the EEHEMT1 model can be used for extracting the component parameters of an enhancement-mode PHEMT.
文摘An accurate and novel small-signal equivalent circuit model for GaN high-electron-mobility transistors(HEMTs)is proposed,which considers a dual-field-plate(FP)made up of a gate-FP and a source-FP.The equivalent circuit of the overall model is composed of parasitic elements,intrinsic transistors,gate-FP,and source-FP networks.The equivalent circuit of the gate-FP is identical to that of the intrinsic transistor.In order to simplify the complexity of the model,a series combination of a resistor and a capacitor is employed to represent the source-FP.The analytical extraction procedure of the model parameters is presented based on the proposed equivalent circuit.The verification is carried out on a 4×250μm GaN HEMT device with a gate-FP and a source-FP in a 0.45μm technology.Compared with the classic model,the proposed novel small-signal model shows closer agreement with measured S-parameters in the range of 1.0 to 18.0 GHz.
文摘In this work,forward current voltage characteristics for multi-quantum wells Al_(0.33)Ga_(0.67)As Schottky diode were measured at temperature ranges from 100 to 300 K.The main parameters of this Schottky diode,such as the ideality factor,barrier height,series resistance and saturation current,have been extracted using both analytical and heuristics methods.Differential evolution(DE),particle swarm optimization(PSO)and artificial bee colony(ABC)have been chosen as candidate heuristics algorithms,while Cheung technic was selected as analytical extraction method.The obtained results show clearly the high performance of DE algorithms in terms of parameters accuracy,convergence speed and robustness.
文摘The mathematical modeling of solar cells is essential for any optimization operation of the efficiency or the diagnosis of photovoltaic generator. The photovoltaic module is generally represented by an equivalent circuit whose parameters are experimentally calculated by using the characteristic current-tension, I-V. The precise determination of these parameters stays a challenge for the researchers, making to a big difference in the models and the digital methods dedicated to their characterizations. In the present paper, We are interested to characterize the parameters of single diode and two diodes models, in order to plan the behavior of the photovoltaic generator under real functioning conditions. We developed an identification method of the parameters using Newton Raphson method by using the software Matlab/Simulink. This method is the faster technique which allows the identification of several parameters and can be used in real time applications. The results of the proposed method show an accordance with the experimental and simulated characteristics of photovoltaic generator.
基金Supported by the Project of National Key Laboratory Fund
文摘The method extracting the electromagnetic parameters from scattering coefficients was studied in this paper. The Support Vector Machine (SVM) method is used to solve the inverse problem of parameters extraction. The mapping relationship is set up by calculating a large number of S pa-rameters from the samples with different permittivity by using transmission line theory. The simulated data set is used as training data set for SVM. After the training, the SVM is used to predict the permittivity of material from the scattering coefficients.
文摘Extraction of accurate Photo Voltaic (PV) model parameters is a challenging task for PV simulator developers. To mitigate this challenging task a novel approach using Gravitational Search Algorithm (GSA) for accurate extraction of PV model parameters is proposed in this paper. GSA is a population based heuristic optimization method which depends on the law of gravity and mass interactions. In this optimization method, the searcher agents are collection of masses which interact with each other using laws of gravity and motion of Newton. The developed PV model utilizes mathematical equations and is described through an equivalent circuit model comprising of a current source, a diode, a series resistor and a shunt resistor including the effect of changes in solar irradiation and ambient temperature. The optimal values of photo-current, diode ideality factor, series resistance and shunt resistance of the developed PV model are obtained by using GSA. The simulations of the characteristic curves of PV modules (SM55, ST36 and ST40) are carried out using MATLAB/Simulink environment. Results obtained using GSA are compared with Differential Evolution (DE), which shows that GSA based parameters are better optimal when compared to DE.
文摘Several parameters of a commercial Si-based Schottky barrier diode (SBD) with unknown metal material and semiconductor-type have been investigated in this work from dark forward and reverse I-V characteristics in the temperature (T) range of [274.5 K - 366.5 K]. Those parameters include the reverse saturation current (I<sub>s</sub>), the ideality factor (n), the series and the shunt resistances (R<sub>s</sub> and R<sub>sh</sub>), the effective and the zero bias barrier heights (Φ<sub>B</sub> and Φ<sub>B0</sub>), the product of the electrical active area (A) and the effective Richardson constant (A**), the built-in potential (V<sub>bi</sub>), together with the semiconductor doping concentration (N<sub>A</sub> or N<sub>D</sub>). Some of them have been extracted by using two or three different methods. The main features of each approach have been clearly stated. From one parameter to another, results have been discussed in terms of structure performance, comparison on one another when extracted from different methods, accordance or discordance with data from other works, and parameter’s temperature or voltage dependence. A comparison of results on Φ<sub>B</sub>, ΦB0</sub>, n and N<sub>A</sub> or N<sub>D</sub> parameters with some available data in literature for the same parameters, has especially led to clear propositions on the identity of the analyzed SBD’s metal and semiconductor-type.
文摘Accurate PV system simulators are implemented with expensive software platforms using paid irradiance data.The main purpose of this paper is to develop and validate a PV system simulator,beginning with a solar cell parameter extraction model,then test and validate long-termIrradiance data using free online source(Typical Meteorological Year TMY in(PVGIS)European website),and finally building full solar generator simulator to run in working real conditions.Comparing results with Accurate Paid PV simulators(which use theMuneer model)showed good accuracy of the proposed simulator.Work flow starts with the Irradiance model’s data processing,then solar cell 5 parameters model data processing(to extract cell parameters),and finally full system simulator.MATLAB coding programs in real working conditions are used for simulation.Results of solar cell parameter extraction show 99.6%to 99.99%matching with data sheet and cell performance under standard test conditions.Systemmodel simulation output shows 8%less yearly generated energy compared to the PVGIS 2022 long-term simulation(hourly basis(one-year time)).This is due to incident energy variations(between the years 2016 and 2022)of 4.02%.The novelty of the algorithm is the methodology,as it tests irradiance data on an hourly basis and validates results for a whole continuous year.Also,the 5-parameter solar cell model is used to be validated in long term analysis,not only STC conditions and could be applied on any PV solar cell.The algorithm and block diagramused are scalable,modular,and interchangeable with similarmodels to be tested.This simulator could test severalmethods andmodels in solar pv technology.
基金supported by the National Natural Science Foundation of China under Grant No.62001339.
文摘This paper proposes a design and fine-tuning method for mixed electric and magnetic coupling filters.It derives the quantitative relationship between the coupling coefficients(electric and magnetic coupling,i.e.,EC and MC)and the linear coefficients of frequencydependent coupling for the first time.Different from the parameter extraction technique using the bandpass circuit model,the proposed approach explicitly relatesEC and MC to the coupling matrix model.This paper provides a general theoretic framework for computer-aided design and tuning of a mixed electric and magnetic coupling filter based on coupling matrices.An example of a 7th-order coaxial combline filter design is given in the paper,verifying the practical value of the approach.
文摘We improve the genetic algorithm by combining it with a simulated annealing algorithm. The improved algorithm is used to extract model parameters of SOI MOSFETs, which are fabricated with standard 1.2μm CMOS/SOI technology developed by the Institute of Microelectronics of the Chinese Academy of Sciences. The simulation results using this model are in excellent agreement with experimental results. The precision is improved noticeably compared to commercial software. This method requires neither a deeper understanding of SOl MOSFETs model nor more complex computations than conventional algorithms used by commercial software. Comprehensive verification shows that this model is applicable to a very large range of device sizes.
文摘A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance into consideration,is first determined based on the device's physical structure. The photodetector's S parameters are then on-wafer measured, and the measured raw data are processed with further calibration. A genetic algorithm is used to fit the measured data, thereby allowing us to calculate each parameter value of the model. Experimental resuits show that the modeled parameters are well matched to the measurements in a frequency range from 130MHz to 20GHz, and the proposed method is proved feasible. This model can give an exact description of the photodetector chip's high frequency performance,which enables an effective circuit-level prediction for photodetector and optoelectronic integrated circuits.
文摘A novel equivalent circuit model for a GaAs PIN diode is presented based on physical analysis. The diode is divided into three parts: the p^+ n^- junction, the i-layer, and the n^- n^+ junction, which are modeled separately. The entire model is then formed by combining the three sub-models. In this way, the model's accuracy is greatly enhanced. Furthermore, the corresponding parameter extraction method is easy, requiring no rigorous experiment or measurement. To validate this newly proposed model,fifteen groups of diodes are fabricated. Measurement shows that the model exactly represents behavior of GaAs PIN diodes under both forward and reversely biased conditions.
文摘Based on the 65nm CMOS process,a novel parallel RLC coupling interconnect analytical model is presented synthetically considering parasitical capacitive and parasitical inductive effects. Applying function approximation and model order-reduction to the model, we derive a closed-form and time-domain waveform for the far-end crosstalk of a victim line under ramp input transition. For various interconnect coupling sizes, the proposed RLC coupling analytical model enables the estimation of the crosstalk voltage within 2.50% error compared with Hspice simulation in a 65nm CMOS process. This model can be used in computer-aided-design of nanometer SOCs.
文摘A novel parameter extraction technique suitable f or short channel length lightly-doped-drain (LDD) MOSFET's is proposed which seg ments the total gate bias range,and executes the linear regression in every subs ections,yielding the gate bias dependent parameters,such as effective channel le ngth,parasitic resistance,and mobility,etc.This method avoids the gate bias rang e optimization,and retains the accuracy and simplicity of linear regression.The extracted gate bias dependent parameters are implemented in the compact I-V model which has been proposed for deep submicron LDD MOSFET's.The good agreemen ts between simulations and measurements of the devices on 0.18μm CMOS technolo gy indicate the effectivity of this technique.
文摘A novel parameter extraction method with rational functions is presented for the 2-πequivalent circuit model of RF CMOS spiral inductors. The final S-parameters simulated by the circuit model closely match experimental data. The extraction strategy is straightforward and can be easily implemented as a CAD tool to model spiral inductors. The resulting circuit models will be very useful for RF circuit designers.
文摘A sub circuit model for VDMOS is built according to its physical structure.Parameters and formulas describing the device are also derived from this model.Comparing to former results,this model avoids too many technical parameters and simplify the sub circuit efficiently.As a result of numeric computation,this simple model with clear physical conception demonstrates excellent agreements between measured and modeled response (DC error within 5%,AC error within 10%).Such a model is now available for circuit simulation and parameter extraction.
文摘This paper presents an accurate small-signal model for multi-gate GaAs pHEMTs in switching-mode.The extraction method for the proposed model is developed.A 2-gate switch structure is fabricated on a commercial 0.5μm AlGaAs/GaAs pHEMT technology to verify the proposed model.Excellent agreement has been obtained between the measured and simulated results over a wide frequency range.
基金Project supported by the International Science and Technology Cooperation Program of China(Grant No.2014DFA50870)the National Natural Science Foundation of China(Grant Nos.61377089,61475111,and 61527819)+4 种基金Shanxi Province Natural Science Foundation,China(Grant No.2015011049)Shanxi Province Youth Science and Technology Foundation,China(Grant No.201601D021069)Shanxi Scholarship Council of China(Grant No.2016-036)Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi,ChinaProgram for Sanjin Scholar,China
文摘We design a hybrid integrated chaotic semiconductor laser with short-cavity optical feedback.It can be assembled in a commercial butterfly shell with just three micro-lenses.One of them is coated by a transflective film to provide the optical feedback for chaos generation while insuring regular laser transmission.We prove the feasibility of the chaos generation in this compact structure and provide critical external parameters for the fabrication by theoretical simulations.Rather than the usual changeless internal parameters used in previous simulation research,we extract the real parameters of the chip by experiment.Moreover,the maps of the largest Lyapunov exponent with varying bias current and feedback intensity Kap demonstrate the dynamic characteristics under different external-cavity conditions.Each laser chip has its own optimal external cavity length(L)and feedback intensity(Kap)to generate chaos because of the different internal parameters.We have acquired two ranges of optimal parameters(L=4 mm,0.12〈Kap〈0.2 and L=5 mm,0.07〈Kap〈0.12)for two different chips.
基金Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(Grant No.U1230112)
文摘Parameter extraction is an important step for circuit simulation methods that are based on physical models of semiconductor devices. A novel physical parameter extraction approach for Schottky diodes is proposed in this paper. By employing a set of analytical formulas, this approach extracts all of the necessary physical parameters of the diode chip in a unique way. It then extracts the package parasitic parameters with a curve-fitting method. To validate the proposed approach, a model HSMS-282 c commercial Schottky diode is taken as an example. Its physical parameters are extracted and used to simulate the diode's electrical characteristics. The simulated results based on the extracted parameters are compared with the measurements and a good agreement is obtained, which verifies the feasibility and accuracy of the proposed approach.
文摘A model of monolithic transformers is presented, which is analyzed with characteristic functions. A closed- form analytical approach to extract all the model parameters for the equivalent circuit of Si-based on-chip transformers is proposed. A novel de-coupling technique is first developed to reduce the complexity in the Y parameters for the transformer, and the model parameters can then be extracted analytically by a set of characteristic functions. Simulation based on the extracted parameters has been carried out for transformers with different structures, and good accuracy is obtained compared to a 3-demensional full-wave numerical electro- magnetic field solver. The presented approach will be very useful to provide a scalable and wide-band compact circuit model for Si-based RF transformers.