期刊文献+
共找到653篇文章
< 1 2 33 >
每页显示 20 50 100
APPLICATION OF ARTIFICIAL NEURAL NETWORK TO INVERSE PROBLEMS OF ESTIMATING INNER ETCH OF ELASTOPLASTIC PIPE UNDER PRESSURE
1
作者 Guan, BT Shen, CW +1 位作者 Xiao, JS Cai, YS 《Acta Mechanica Solida Sinica》 SCIE EI 1996年第1期88-93,共6页
To determine a variation of pipe's inner geometric shape as due to etch, the three-layered feedforward artificial neural network is used in the inverse analysis through observing the elastoplastic strains of the o... To determine a variation of pipe's inner geometric shape as due to etch, the three-layered feedforward artificial neural network is used in the inverse analysis through observing the elastoplastic strains of the outer wall under the working inner pressure. Because of different kinds of inner wail radii and eccentricity. several groups of strains calculated with computational mechanics are used for the network to do learning. Numerical calculation demonstrates that this method is effective and the estimated inner wall geometric parameters have high precision. 展开更多
关键词 artificial neural network inverse problem ELASTOPLASTIC finite element
下载PDF
A transfer learning enhanced physics-informed neural network for parameter identification in soft materials
2
作者 Jing’ang ZHU Yiheng XUE Zishun LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1685-1704,共20页
Soft materials,with the sensitivity to various external stimuli,exhibit high flexibility and stretchability.Accurate prediction of their mechanical behaviors requires advanced hyperelastic constitutive models incorpor... Soft materials,with the sensitivity to various external stimuli,exhibit high flexibility and stretchability.Accurate prediction of their mechanical behaviors requires advanced hyperelastic constitutive models incorporating multiple parameters.However,identifying multiple parameters under complex deformations remains a challenge,especially with limited observed data.In this study,we develop a physics-informed neural network(PINN)framework to identify material parameters and predict mechanical fields,focusing on compressible Neo-Hookean materials and hydrogels.To improve accuracy,we utilize scaling techniques to normalize network outputs and material parameters.This framework effectively solves forward and inverse problems,extrapolating continuous mechanical fields from sparse boundary data and identifying unknown mechanical properties.We explore different approaches for imposing boundary conditions(BCs)to assess their impacts on accuracy.To enhance efficiency and generalization,we propose a transfer learning enhanced PINN(TL-PINN),allowing pre-trained networks to quickly adapt to new scenarios.The TL-PINN significantly reduces computational costs while maintaining accuracy.This work holds promise in addressing practical challenges in soft material science,and provides insights into soft material mechanics with state-of-the-art experimental methods. 展开更多
关键词 soft material parameter identification physics-informed neural network(PINN) transfer learning inverse problem
下载PDF
A Novel On-Site-Real-Time Method for Identifying Characteristic Parameters Using Ultrasonic Echo Groups and Neural Network
3
作者 Shuyong Duan Jialin Zhang +2 位作者 Heng Ouyang Xu Han Guirong Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期215-228,共14页
On-site and real-time non-destructive measurement of elastic constants for materials of a component in a in-service structure is a challenge due to structural complexities,such as ambiguous boundary,variable thickness... On-site and real-time non-destructive measurement of elastic constants for materials of a component in a in-service structure is a challenge due to structural complexities,such as ambiguous boundary,variable thickness,nonuniform material properties.This work develops for the first time a method that uses ultrasound echo groups and artificial neural network(ANN)for reliable on-site real-time identification of material parameters.The use of echo groups allows the use of lower frequencies,and hence more accommodative to structural complexity.To train the ANNs,a numerical model is established that is capable of computing the waveform of ultrasonic echo groups for any given set of material properties of a given structure.The waveform of an ultrasonic echo groups at an interest location on the surface the structure with material parameters varying in a predefined range are then computed using the numerical model.This results in a set of dataset for training the ANN model.Once the ANN is trained,the material parameters can be identified simultaneously using the actual measured echo waveform as input to the ANN.Intensive tests have been conducted both numerically and experimentally to evaluate the effectiveness and accuracy of the currently proposed method.The results show that the maximum identification error of numerical example is less than 2%,and the maximum identification error of experimental test is less than 7%.Compared with currently prevailing methods and equipment,the proposefy the density and thickness,in addition to the elastic constants.Moreover,the reliability and accuracy of inverse prediction is significantly improved.Thus,it has broad applications and enables real-time field measurements,which has not been fulfilled by any other available methods or equipment. 展开更多
关键词 Parameter identification Ultrasonic echo group High-precision modeling Artificial neural network NDT
下载PDF
Physics-constrained neural network for solving discontinuous interface K-eigenvalue problem with application to reactor physics
4
作者 Qi-Hong Yang Yu Yang +3 位作者 Yang-Tao Deng Qiao-Lin He He-Lin Gong Shi-Quan Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第10期178-200,共23页
Machine learning-based modeling of reactor physics problems has attracted increasing interest in recent years.Despite some progress in one-dimensional problems,there is still a paucity of benchmark studies that are ea... Machine learning-based modeling of reactor physics problems has attracted increasing interest in recent years.Despite some progress in one-dimensional problems,there is still a paucity of benchmark studies that are easy to solve using traditional numerical methods albeit still challenging using neural networks for a wide range of practical problems.We present two networks,namely the Generalized Inverse Power Method Neural Network(GIPMNN)and Physics-Constrained GIPMNN(PC-GIPIMNN)to solve K-eigenvalue problems in neutron diffusion theory.GIPMNN follows the main idea of the inverse power method and determines the lowest eigenvalue using an iterative method.The PC-GIPMNN additionally enforces conservative interface conditions for the neutron flux.Meanwhile,Deep Ritz Method(DRM)directly solves the smallest eigenvalue by minimizing the eigenvalue in Rayleigh quotient form.A comprehensive study was conducted using GIPMNN,PC-GIPMNN,and DRM to solve problems of complex spatial geometry with variant material domains from the fleld of nuclear reactor physics.The methods were compared with the standard flnite element method.The applicability and accuracy of the methods are reported and indicate that PC-GIPMNN outperforms GIPMNN and DRM. 展开更多
关键词 neural network Reactor physics Neutron diffusion equation Eigenvalue problem inverse power method
下载PDF
Neural Network inverse Adaptive Controller Based on Davidon Least Square 被引量:2
5
作者 Chen, Zengqiang Lu, Zhao Yuan, Zhuzhi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期47-52,共6页
General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neu... General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme. 展开更多
关键词 ALGORITHMS Backpropagation Convergence of numerical methods Feedforward neural networks inverse problems Least squares approximations Mathematical models Multilayer neural networks
下载PDF
Artificial Neural Network Methods for the Solution of Second Order Boundary Value Problems 被引量:105
6
作者 Cosmin Anitescu Elena Atroshchenko +1 位作者 Naif Alajlan Timon Rabczuk 《Computers, Materials & Continua》 SCIE EI 2019年第4期345-359,共15页
We present a method for solving partial differential equations using artificial neural networks and an adaptive collocation strategy.In this procedure,a coarse grid of training points is used at the initial training s... We present a method for solving partial differential equations using artificial neural networks and an adaptive collocation strategy.In this procedure,a coarse grid of training points is used at the initial training stages,while more points are added at later stages based on the value of the residual at a larger set of evaluation points.This method increases the robustness of the neural network approximation and can result in significant computational savings,particularly when the solution is non-smooth.Numerical results are presented for benchmark problems for scalar-valued PDEs,namely Poisson and Helmholtz equations,as well as for an inverse acoustics problem. 展开更多
关键词 Deep learning adaptive collocation inverse problems artificial neural networks
下载PDF
A Time-Varying Parameter Estimation Method for Physiological Models Based on Physical Information Neural Networks
7
作者 Jiepeng Yao Zhanjia Peng +3 位作者 Jingjing Liu Chengxiao Fan Zhongyi Wang Lan Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2243-2265,共23页
In the establishment of differential equations,the determination of time-varying parameters is a difficult problem,especially for equations related to life activities.Thus,we propose a new framework named BioE-PINN ba... In the establishment of differential equations,the determination of time-varying parameters is a difficult problem,especially for equations related to life activities.Thus,we propose a new framework named BioE-PINN based on a physical information neural network that successfully obtains the time-varying parameters of differential equations.In the proposed framework,the learnable factors and scale parameters are used to implement adaptive activation functions,and hard constraints and loss function weights are skillfully added to the neural network output to speed up the training convergence and improve the accuracy of physical information neural networks.In this paper,taking the electrophysiological differential equation as an example,the characteristic parameters of ion channel and pump kinetics are determined using BioE-PINN.The results demonstrate that the numerical solution of the differential equation is calculated by the parameters predicted by BioE-PINN,the RootMean Square Error(RMSE)is between 0.01 and 0.3,and the Pearson coefficient is above 0.87,which verifies the effectiveness and accuracy of BioE-PINN.Moreover,realmeasuredmembrane potential data in animals and plants are employed to determine the parameters of the electrophysiological equations,with RMSE 0.02-0.2 and Pearson coefficient above 0.85.In conclusion,this framework can be applied not only for differential equation parameter determination of physiological processes but also the prediction of time-varying parameters of equations in other fields. 展开更多
关键词 Physics-informed neural network differential equation bioelectrical signals inverse problems
下载PDF
Solution of Inverse Problem on Distributed Generation Using Complex-Valued Network Inversion
8
作者 Takehiko Ogawa Kyosuke Nakamura 《Journal of Mechanics Engineering and Automation》 2011年第6期436-444,共9页
Solutions of inverse problems are required in various fields of science and engineering. The concept of network inversion has been studied as a neural-network-based solution to inverse problems. In general, inverse pr... Solutions of inverse problems are required in various fields of science and engineering. The concept of network inversion has been studied as a neural-network-based solution to inverse problems. In general, inverse problems are not limited to a real-valued area. Recently, complex-valued neural networks have been actively studied in the field of neural networks. As an extension of network inversion to complex numbers, a complex-valued network inversion has been proposed. Moreover, inverse problems for estimating the parameters of distributed generation systems such as distributed energy plants or smart grids from observed electric circuit data have been studied in the field of natural energy. These emphasize the need to handle complex numbers in an alternating current (AC) circuit. In this paper, the authors propose an application of the complex-valued network inversion to the inverse estimation of a distributed generation. Further, the authors confirm the effectiveness of the complex-valued network inversion on the basis of simulation results. 展开更多
关键词 neural networks network inversion complex numbers inverse problems distributed generation
下载PDF
Inversion of Oceanic Parameters Represented by CTD Utilizing Seismic Multi-Attributes Based on Convolutional Neural Network 被引量:1
9
作者 AN Zhenfang ZHANG Jin XING Lei 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第6期1283-1291,共9页
In Recent years,seismic data have been widely used in seismic oceanography for the inversion of oceanic parameters represented by conductivity temperature depth(CTD).Using this technique,researchers can identify the w... In Recent years,seismic data have been widely used in seismic oceanography for the inversion of oceanic parameters represented by conductivity temperature depth(CTD).Using this technique,researchers can identify the water structure with high horizontal resolution,which compensates for the deficiencies of CTD data.However,conventional inversion methods are modeldriven,such as constrained sparse spike inversion(CSSI)and full waveform inversion(FWI),and typically require prior deterministic mapping operators.In this paper,we propose a novel inversion method based on a convolutional neural network(CNN),which is purely data-driven.To solve the problem of multiple solutions,we use stepwise regression to select the optimal attributes and their combination and take two-dimensional images of the selected attributes as input data.To prevent vanishing gradients,we use the rectified linear unit(ReLU)function as the activation function of the hidden layer.Moreover,the Adam and mini-batch algorithms are combined to improve stability and efficiency.The inversion results of field data indicate that the proposed method is a robust tool for accurately predicting oceanic parameters. 展开更多
关键词 oceanic parameter inversion seismic multi-attributes convolutional neural network
下载PDF
PARAMETERS INVERSION OF FLUID-SATURATED POROUS MEDIA BASED ON NEURAL NETWORKS
10
作者 Wei Peijun Zhang Zimao Han Hua 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第4期342-349,共8页
The multi- layers feedforward neural network is used for inversion ofmaterial constants of fluid-saturated porous media. The direct analysis of fluid-saturated porousmedia is carried out with the boundary element meth... The multi- layers feedforward neural network is used for inversion ofmaterial constants of fluid-saturated porous media. The direct analysis of fluid-saturated porousmedia is carried out with the boundary element method. The dynamic displacement responses obtainedfrom direct analysis for prescribed material parameters constitute the sample sets training neuralnetwork. By virtue of the effective L-M training algorithm and the Tikhonov regularization method aswell as the GCV method for an appropriate selection of regu-larization parameter, the inversemapping from dynamic displacement responses to material constants is performed. Numerical examplesdemonstrate the validity of the neural network method. 展开更多
关键词 fluid-saturated porous media parameter inversion neural networks boundary elements
下载PDF
Identification of Artificial Neural Network Models for Three-Dimensional Simulation of a Vibration-Acoustic Dynamic System
11
作者 Robson S.Magalhaes Cristiano H.O.Fontes +1 位作者 Luiz A.L.de Almeida Marcelo Embirucu 《Open Journal of Acoustics》 2013年第1期14-24,共11页
Industrial noise can be successfully mitigated with the combined use of passive and Active Noise Control (ANC) strategies. In a noisy area, a practical solution for noise attenuation may include both the use of baffle... Industrial noise can be successfully mitigated with the combined use of passive and Active Noise Control (ANC) strategies. In a noisy area, a practical solution for noise attenuation may include both the use of baffles and ANC. When the operator is required to stay in movement in a delimited spatial area, conventional ANC is usually not able to adequately cancel the noise over the whole area. New control strategies need to be devised to achieve acceptable spatial coverage. A three-dimensional actuator model is proposed in this paper. Active Noise Control (ANC) usually requires a feedback noise measurement for the proper response of the loop controller. In some situations, especially where the real-time tridimensional positioning of a feedback transducer is unfeasible, the availability of a 3D precise noise level estimator is indispensable. In our previous works [1,2], using a vibrating signal of the primary source of noise as an input reference for spatial noise level prediction proved to be a very good choice. Another interesting aspect observed in those previous works was the need for a variable-structure linear model, which is equivalent to a sort of a nonlinear model, with unknown analytical equivalence until now. To overcome this in this paper we propose a model structure based on an Artificial Neural Network (ANN) as a nonlinear black-box model to capture the dynamic nonlinear behaveior of the investigated process. This can be used in a future closed loop noise cancelling strategy. We devise an ANN architecture and a corresponding training methodology to cope with the problem, and a MISO (Multi-Input Single-Output) model structure is used in the identification of the system dynamics. A metric is established to compare the obtained results with other works elsewhere. The results show that the obtained model is consistent and it adequately describes the main dynamics of the studied phenomenon, showing that the MISO approach using an ANN is appropriate for the simulation of the investigated process. A clear conclusion is reached highlighting the promising results obtained using this kind of modeling for ANC. 展开更多
关键词 neural networks Nonlinear identification Dynamic Models Distributed Parameter Systems Vibrate-Acoustic Systems
下载PDF
NEAR-INFRARED OPTICAL TOMOGRAPHY IMAGE RECONSTRUCTION APPROACH BASED ON TWO-LAYERED BP NEURAL NETWORK 被引量:1
12
作者 TING LI WEITAO LI ZHIYU QIAN 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2009年第2期143-147,共5页
An image-reconstruction approach for optical tomography is presented,in which a two-layered BP neural network is used to distinguish the tumor location.The inverse problem is solved as optimization problem by Femlab s... An image-reconstruction approach for optical tomography is presented,in which a two-layered BP neural network is used to distinguish the tumor location.The inverse problem is solved as optimization problem by Femlab software and Levenberg–Marquardt algorithm.The concept of the average optical coefficient is proposed in this paper,which is helpful to understand the distribution of the scattering photon from tumor.The reconstructive¯µs by the trained network is reasonable for showing the changes of photon number transporting inside tumor tissue.It realized the fast reconstruction of tissue optical properties and provided optical OT with a new method. 展开更多
关键词 Near-infrared optical tomography two-layered back-propagation neural network inverse problem the average optical coefficient.
下载PDF
Neural Network Inversion for Multilayer Quaternion Neural Networks 被引量:1
13
作者 Takehiko Ogawa 《Computer Technology and Application》 2016年第2期73-82,共10页
Recently, solutions to inverse problems have been required in various engineering fields. The neural network inversion method has been studied as one of the neural network-based solutions. On the other hand, the exten... Recently, solutions to inverse problems have been required in various engineering fields. The neural network inversion method has been studied as one of the neural network-based solutions. On the other hand, the extension of the neural network to a higher-dimensional domain, e.g., complex-value or quaternion, has been proposed, and a number of higher-dimensional neural network models have been proposed. Using the quatemion, we have the advantage of expressing 3D (three-dimensional) object attitudes easily. In the quaternion domain, we can define inverse problems where the cause and the result are expressed by the quaternion. In this paper, we extend the neural network inversion method to the quatemion domain. Further, we provide the results of the computer experiments to demonstrate the process and effectiveness of our method. 展开更多
关键词 inverse problems neural network inversion quatemion inverse mapping inverse kinematics.
下载PDF
A robust behavior of Feed Forward Back propagation algorithm of Artificial Neural Networks in the application of vertical electrical sounding data inversion 被引量:9
14
作者 Y.Srinivas A.Stanley Raj +2 位作者 D.Hudson Oliver D.Muthuraj N.Chandrasekar 《Geoscience Frontiers》 SCIE CAS 2012年第5期729-736,共8页
The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An eff... The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An efficient tool is needed for the interpretation of geophysical parameters to study the subsurface of the earth. Artificial Neural Networks (ANN) perform certain tasks if the structure of the network is modified accordingly for the purpose it has been used. The three most robust networks were taken and comparatively analyzed for their performance to choose the appropriate network. The single- layer feed-forward neural network with the back propagation algorithm is chosen as one of the well- suited networks after comparing the results. Initially, certain synthetic data sets of all three-layer curves have been taken tk^r training the network, and the network is validated by the field datasets collected from Tuticorin Coastal Region (78°7'30"E and 8°48'45"N), Tamil Nadu, India. The interpretation has been done successfully using the corresponding learning algorithm in the present study. With proper training of back propagation networks, it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data concerning the synthetic data trained earlier in the appropriate network. The network is trained with more Vertical Electrical Sounding (VES) data, and this trained network is demon- strated by the field data. Groundwater table depth also has been modeled. 展开更多
关键词 Artificial neural networks(ANN) Resistivity inversion coastal aquifer parameters Layer model
下载PDF
Genetic Nelder-Mead neural network algorithm for fault parameter inversion using GPS data 被引量:1
15
作者 Leyang Wang Ranran Xu Fengbin Yu 《Geodesy and Geodynamics》 CSCD 2022年第4期386-398,共13页
The traditional genetic algorithm(GA)has unstable inversion results and is easy to fall into the local optimum when inverting fault parameters.Therefore,this article considers the combination of GA with other non-line... The traditional genetic algorithm(GA)has unstable inversion results and is easy to fall into the local optimum when inverting fault parameters.Therefore,this article considers the combination of GA with other non-linear algorithms in order to improve the inversion precision of GA.This paper proposes a genetic Nelder-Mead neural network algorithm(GNMNNA).This algorithm uses a neural network algorithm(NNA)to optimize the global search ability of GA.At the same time,the simplex algorithm is used to optimize the local search capability of the GA.Through numerical examples,the stability of the inversion algorithm under different strategies is explored.The experimental results show that the proposed GNMNNA has stronger inversion stability and higher precision compared with the existing algorithms.The effectiveness of GNMNNA is verified by the BodrumeKos earthquake and Monte Cristo Range earthquake.The experimental results show that GNMNNA is superior to GA and NNA in both inversion precision and computational stability.Therefore,GNMNNA has greater application potential in complex earthquake environment. 展开更多
关键词 Fault parameter inversion Genetic algorithm Nelder-Mead simplex algorithm neural network algorithm
下载PDF
Efficient Numerical Optimization Algorithm Based on New Real-Coded Genetic Algorithm, AREX + JGG, and Application to the Inverse Problem in Systems Biology 被引量:1
16
作者 Asako Komori Yukihiro Maki +2 位作者 Masahiko Nakatsui Isao Ono Masahiro Okamoto 《Applied Mathematics》 2012年第10期1463-1470,共8页
In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical... In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical optimization algorithm to estimate more than 100 real-coded parameters should be developed for this purpose. New real-coded genetic algorithm (RCGA), the combination of AREX (adaptive real-coded ensemble crossover) with JGG (just generation gap), have applied to the inference of genetic interactions involving more than 100 parameters related to the interactions with using experimentally observed time-course data. Compared with conventional RCGA, the combination of UNDX (unimodal normal distribution crossover) with MGG (minimal generation gap), new algorithm has shown the superiority with improving early convergence in the first stage of search and suppressing evolutionary stagnation in the last stage of search. 展开更多
关键词 inverse problem S-SYSTEM FORMALISM Gene REGULATORY network System identification Real-Coded Genetic Algorithm
下载PDF
USING NEURAL NETWORK BASED NONLINEAR IFS TO MODEL TIME SEQUENCES
17
作者 Yang Su Li Zhishun(institute of Marine Engineering, Northwestern Polytechnical University, Xi’an 710072) 《Journal of Electronics(China)》 1999年第4期367-371,共5页
A novel neural network based iterated function system (IFS) model is presented in this paper while the precondition to ensure the model is also explored. Applying it to some practical data, the given signal can be app... A novel neural network based iterated function system (IFS) model is presented in this paper while the precondition to ensure the model is also explored. Applying it to some practical data, the given signal can be approximated exactly by the attractor generated by this model, which provides another way to resolve fractal inverse problem. 展开更多
关键词 FRACTAL FRACTAL inverse problem IFS neural network NONLINEAR
下载PDF
A dimension-reduced neural network-assisted approximate Bayesian computation for inverse heat conduction problems 被引量:1
18
作者 Yang Zeng 《Transportation Safety and Environment》 EI 2021年第3期216-230,共15页
Due to the flexibility and feasibility of addressing ill-posed problems,the Bayesian method has been widely used in inverse heat conduction problems(IHCPs).However,in the real science and engineering IHCPs,the likelih... Due to the flexibility and feasibility of addressing ill-posed problems,the Bayesian method has been widely used in inverse heat conduction problems(IHCPs).However,in the real science and engineering IHCPs,the likelihood function of the Bayesian method is commonly computationally expensive or analytically unavailable.In this study,in order to circumvent this intractable likelihood function,the approximate Bayesian computation(ABC)is expanded to the IHCPs.In ABC,the high dimensional observations in the intractable likelihood function are equalized by their low dimensional summary statistics.Thus,the performance of the ABC depends on the selection of summary statistics.In this study,a machine learning-based ABC(ML-ABC)is proposed to address the complicated selections of the summary statistics.The Auto-Encoder(AE)is a powerful Machine Learning(ML)framework which can compress the observations into very low dimensional summary statistics with little information loss.In addition,in order to accelerate the calculation of the proposed framework,another neural network(NN)is utilized to construct the mapping between the unknowns and the summary statistics.With this mapping,given arbitrary unknowns,the summary statistics can be obtained efficiently without solving the time-consuming forward problem with numerical method.Furthermore,an adaptive nested sampling method(ANSM)is developed to further improve the efficiency of sampling.The performance of the proposed method is demonstrated with two IHCP cases. 展开更多
关键词 inverse heat conduction problem(IHCP) approximate Bayesian computation(ABC) Auto-Encoder(AE) neural network(NN) adaptive nested sampling method(ANSM)
原文传递
MULTIPLE PARAMETERS IDENTIFICATION PROBLEMS IN RESISTIVITY WELL-LOGGING 被引量:2
19
作者 CAI ZHIJIE 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1998年第3期265-272,共8页
In petroleum exploitation, the main aim of resistivity well-logging is to determine the resistivity of the layers by measuring the potential on the electrodes. This mathematical problem can be described as an inverse ... In petroleum exploitation, the main aim of resistivity well-logging is to determine the resistivity of the layers by measuring the potential on the electrodes. This mathematical problem can be described as an inverse problem for the elliptic equivalued surface boundary value problem. In this paper, the author gets the expression of the derivative functions of the potential on the electrodes with respect to the resistivity of the layers. This allows us to solve the identification problem of the resistivity of the layers. 展开更多
关键词 Multiple parameters identification problem Resistivity well-logging inverse problem Equivalued surface boundary value problem
全文增补中
Identification of diseases for soybean seeds by computer vision applying BP neural network 被引量:4
20
作者 Tan Kezhu Chai Yuhua +1 位作者 Song Weixian Cao Xiaoda 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2014年第3期43-50,共8页
The use of computer vision for estimating quality in agriculture products has become wide spread in recent years and the composition,variety,or ripeness can be estimated.On the other hand,the appearance is one of the ... The use of computer vision for estimating quality in agriculture products has become wide spread in recent years and the composition,variety,or ripeness can be estimated.On the other hand,the appearance is one of the most worrying issues for producers due to its influence on quality.In this research,computer vision technology combined with BP artificial neural network(ANN)was developed to identify soybean frogeye,mildewed soybean,worm-eaten soybean and damaged soybean.Thirty-nine characteristic parameters from color,texture and shape characteristics were computed after preprocessing the acquired soybean images.The dimensionality of the characteristic parameters was reduced from 39 dimensionalities to 12 dimensionalities using the method of principal component analysis(PCA).MALAB software was used to build a prediction model according to 12 characteristic parameters.The identification accuracies of soybean frogeye,mildewed soybean,damaged soybean and worm-eaten soybean are 96%,95%,92%,and 92%,respectively.And the accuracy for heterogeneous soybean seeds with several diseases is 90%.The results show that the prediction model constructed by BP neural network can identify the diseases of soybean seeds.And it is useful to estimate appearance quality of soybean by computer vision applying BP neural network. 展开更多
关键词 soybean seed disease identification computer vision BP neural network characteristic parameters data reduction
原文传递
上一页 1 2 33 下一页 到第
使用帮助 返回顶部