The Stokes production coefficient(E_(6))constitutes a critical parameter within the Mellor-Yamada type(MY-type)Langmuir turbulence(LT)parameterization schemes,significantly affecting the simulation of turbulent kineti...The Stokes production coefficient(E_(6))constitutes a critical parameter within the Mellor-Yamada type(MY-type)Langmuir turbulence(LT)parameterization schemes,significantly affecting the simulation of turbulent kinetic energy,turbulent length scale,and vertical diffusivity coefficient for turbulent kinetic energy in the upper ocean.However,the accurate determination of its value remains a pressing scientific challenge.This study adopted an innovative approach by leveraging deep learning technology to address this challenge of inferring the E_(6).Through the integration of the information of the turbulent length scale equation into a physical-informed neural network(PINN),we achieved an accurate and physically meaningful inference of E_(6).Multiple cases were examined to assess the feasibility of PINN in this task,revealing that under optimal settings,the average mean squared error of the E_(6) inference was only 0.01,attesting to the effectiveness of PINN.The optimal hyperparameter combination was identified using the Tanh activation function,along with a spatiotemporal sampling interval of 1 s and 0.1 m.This resulted in a substantial reduction in the average bias of the E_(6) inference,ranging from O(10^(1))to O(10^(2))times compared with other combinations.This study underscores the potential application of PINN in intricate marine environments,offering a novel and efficient method for optimizing MY-type LT parameterization schemes.展开更多
The accumulation of tectonic stress may cause earthquakes at some epochs. However, in most cases, it leads to crustal deformations. Underground water level is a sensitive indication of the crustal deformations. We inc...The accumulation of tectonic stress may cause earthquakes at some epochs. However, in most cases, it leads to crustal deformations. Underground water level is a sensitive indication of the crustal deformations. We incorporate the information of the underground water level into the stress release models (SRM), and obtain the underground water stress release model (USRM). We apply USRM to the earthquakes occurred at Tangshan region. The analysis shows that the underground water stress release model outperforms both Poisson model and stress release model. Monte Carlo simulation shows that the simulated seismicity by USRM is very close to the real seismicity.展开更多
Glitches represent a category of non-Gaussian and transient noise that frequently intersects with gravitational wave(GW)signals,thereby exerting a notable impact on the processing of GW data.The inference of GW parame...Glitches represent a category of non-Gaussian and transient noise that frequently intersects with gravitational wave(GW)signals,thereby exerting a notable impact on the processing of GW data.The inference of GW parameters,crucial for GW astronomy research,is particularly susceptible to such interference.In this study,we pioneer the utilization of a temporal and time-spectral fusion normalizing flow for likelihood-free inference of GW parameters,seamlessly integrating the high temporal resolution of the time domain with the frequency separation characteristics of both time and frequency domains.Remarkably,our findings indicate that the accuracy of this inference method is comparable to that of traditional non-glitch sampling techniques.Furthermore,our approach exhibits a greater efficiency,boasting processing times on the order of milliseconds.In conclusion,the application of a normalizing flow emerges as pivotal in handling GW signals affected by transient noises,offering a promising avenue for enhancing the field of GW astronomy research.展开更多
基金The National Key Research and Development Program of China under contract No.2022YFC3105002the National Natural Science Foundation of China under contract No.42176020the project from the Key Laboratory of Marine Environmental Information Technology,Ministry of Natural Resources,under contract No.2023GFW-1047.
文摘The Stokes production coefficient(E_(6))constitutes a critical parameter within the Mellor-Yamada type(MY-type)Langmuir turbulence(LT)parameterization schemes,significantly affecting the simulation of turbulent kinetic energy,turbulent length scale,and vertical diffusivity coefficient for turbulent kinetic energy in the upper ocean.However,the accurate determination of its value remains a pressing scientific challenge.This study adopted an innovative approach by leveraging deep learning technology to address this challenge of inferring the E_(6).Through the integration of the information of the turbulent length scale equation into a physical-informed neural network(PINN),we achieved an accurate and physically meaningful inference of E_(6).Multiple cases were examined to assess the feasibility of PINN in this task,revealing that under optimal settings,the average mean squared error of the E_(6) inference was only 0.01,attesting to the effectiveness of PINN.The optimal hyperparameter combination was identified using the Tanh activation function,along with a spatiotemporal sampling interval of 1 s and 0.1 m.This resulted in a substantial reduction in the average bias of the E_(6) inference,ranging from O(10^(1))to O(10^(2))times compared with other combinations.This study underscores the potential application of PINN in intricate marine environments,offering a novel and efficient method for optimizing MY-type LT parameterization schemes.
基金financial supported by the National Natural Science Foundation of China under the grant No.10871026
文摘The accumulation of tectonic stress may cause earthquakes at some epochs. However, in most cases, it leads to crustal deformations. Underground water level is a sensitive indication of the crustal deformations. We incorporate the information of the underground water level into the stress release models (SRM), and obtain the underground water stress release model (USRM). We apply USRM to the earthquakes occurred at Tangshan region. The analysis shows that the underground water stress release model outperforms both Poisson model and stress release model. Monte Carlo simulation shows that the simulated seismicity by USRM is very close to the real seismicity.
基金the National SKA Program of China(2022SKA0110200,2022SKA0110203)the National Natural Science Foundation of China(11975072,11875102,11835009)the National 111 Project(B16009)。
文摘Glitches represent a category of non-Gaussian and transient noise that frequently intersects with gravitational wave(GW)signals,thereby exerting a notable impact on the processing of GW data.The inference of GW parameters,crucial for GW astronomy research,is particularly susceptible to such interference.In this study,we pioneer the utilization of a temporal and time-spectral fusion normalizing flow for likelihood-free inference of GW parameters,seamlessly integrating the high temporal resolution of the time domain with the frequency separation characteristics of both time and frequency domains.Remarkably,our findings indicate that the accuracy of this inference method is comparable to that of traditional non-glitch sampling techniques.Furthermore,our approach exhibits a greater efficiency,boasting processing times on the order of milliseconds.In conclusion,the application of a normalizing flow emerges as pivotal in handling GW signals affected by transient noises,offering a promising avenue for enhancing the field of GW astronomy research.