A simple parametric approach to design a full-order observer for matrix second-order linear systems with uncertain disturbance input in the matrixsecond-order framework is proposed. The basic idea is to minimize the H...A simple parametric approach to design a full-order observer for matrix second-order linear systems with uncertain disturbance input in the matrixsecond-order framework is proposed. The basic idea is to minimize the H2 norm of the transfer function from disturbance to estimation error using the design degrees of freedom provided by a parametric approach in the observer design. Besides the design parameters, the eigenvalues of the closed-loop system are also optimized within desired regions on the left-half of the complex plane. Using the proposed approach, additional specifications can be easily achieved. A spring-mass system is using to show the effect of the proposed approaches.展开更多
A robust task space tracking scheme is proposed for the free-flying space manipulator system. The dynamic equations of the system are derived via the law of momentum conservation, and then a linear state space represe...A robust task space tracking scheme is proposed for the free-flying space manipulator system. The dynamic equations of the system are derived via the law of momentum conservation, and then a linear state space representation is formulated by local linearization. A parametric approach is applied by using the eigenstructure assignment theory and the model reference method. A feedback stabilizing controller and a feedforward compensation controller are built based on the approach. Then an optimization procedure is followed after that to obtain the desired requirement and characteristics. Simulation results are presented to show the effectiveness of the proposed method.展开更多
This research provides an exploration of a biomimetic approach in the process of designing a candelabra model using linear shaped leaves of a Bell flower.The design process described in this research contains two step...This research provides an exploration of a biomimetic approach in the process of designing a candelabra model using linear shaped leaves of a Bell flower.The design process described in this research contains two steps:biological and geometrical.In the first biological step,a proper model for the creation of an urban element was found from nature in a Bell flower(Campanula persicifolia L.).The upper leaves of the selected plant,which are small with a linear spear and sharpening at the top,were chosen for the modeling process.The second step included applying two geometrical methods,i.e.,Voronoi diagrams and Delaunay triangulation.A geometrical leaf form of the selected plant species and the modeling process were obtained using aparametric modeling software,Blender.Using different Blender plug-ins and modifiers,Delaunay triangulation and Voronoi diagram were implemented by marking the starting points on the leaf form in the image data source,adjusting the Delaunay triangulation parameters,and creating Voronoi diagrams in which the Voronoi points were located at the shortest distance from the edges of the Voronoi polygon.Consequently,a three dimensional model of a candelabra was developed through this study.展开更多
To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furtherm...To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furthermore, the flight control problem is formulated as a robust model tracking control problem. And then, based on the robust parametric approach, eigenstructure assignment and reference model tracking theory, a parametric optimization method for robust controller design is presented. The simulation results show the effectiveness of the proposed approach.展开更多
Insulation systems in high-voltage electric machines play a pivotal role in the reliable operation and longevity of the equipment.Mica-based insulation materials have proven to possess and maintain excellent dielectri...Insulation systems in high-voltage electric machines play a pivotal role in the reliable operation and longevity of the equipment.Mica-based insulation materials have proven to possess and maintain excellent dielectric properties in the long run and prevent premature insulation degradation.Numerous qualifications tests,such as voltage endurance,are outlined in IEC and IEEE standards.The authors,however,take a different parametric approach,opting for reliability assessment of insulation systems using derived three-parameter Weibull models.Therefore,instead of simple pass–fail criteria,empirical data is employed to determine failure rate probabilities quantitatively and objectively.Experimental data,including breakdown,dissipation factor,and partial discharge mea-surements,are used to construct the Weibull distribution model to predict fault and failure rates and calculate hazard functions.The rigorous examinations interpreted through the analytical model help assess insulation system resilience and particularly the impact of electrical field stress and mica content.Variation of electrical stress from 66.75 to 71.20 V/mil demonstrated how the mean time to failure of the system changed from 146.4 to 85.1 at 3 Un,hence identifying opportunities for design improvement and uncovering performance boundaries.Ultimately,the developed framework enhances comprehension of insulation system failure probabilities,guiding design decisions and ensuring a secure and reliable operation of electrical machines across applications.展开更多
The robust stabilization problem (RSP) for a plant family P(s,δ,δ) having real parameter uncertainty δ will be tackled. The coefficients of the numerator and the denominator of P(s,δ,δ) are affine functions of δ...The robust stabilization problem (RSP) for a plant family P(s,δ,δ) having real parameter uncertainty δ will be tackled. The coefficients of the numerator and the denominator of P(s,δ,δ) are affine functions of δ with ‖δ‖p≤δ. The robust stabilization problem for P(s,δ,δ) is essentially to simultaneously stabilize the infinitely many members of P(s,δ,δ) by a fixed controller. A necessary solvability condition is that every member plant of P(s,δ,δ) must be stabilizable, that is, it is free of unstable pole-zero cancellation. The concept of stabilizability radius is introduced which is the maximal norm bound for δ so that every member plant is stabilizable. The stability radius δmax(C) of the closed-loop system composed of P(s,δ,δ) and the controller C(s) is the maximal norm bound such that the closed-loop system is robustly stable for all δ with ‖δ‖p<δmax(C). Using the convex parameterization approach it is shown that the maximal stability radius is exactly the stabilizability radius. Therefore, the RSP is solvable if and only if every member plant of P(s,δ,δ) is stabilizable.展开更多
The nonlinear Kortewege-de Varies(KdV)equation is a functional description for modelling ion-acoustic waves in plasma,long internal waves in a density-stratified ocean,shallow-water waves and acoustic waves on a cryst...The nonlinear Kortewege-de Varies(KdV)equation is a functional description for modelling ion-acoustic waves in plasma,long internal waves in a density-stratified ocean,shallow-water waves and acoustic waves on a crystal lattice.This paper focuses on developing and analysing a resilient double parametric analytical approach for the nonlinear fuzzy fractional KdV equation(FFKdVE)under gH-differentiability of Caputo fractional order,namely the q-Homotopy analysis method with the Shehu transform(q-HASTM).A triangular fuzzy number describes the Caputo fractional derivative of orderα,0<α≤1,for modelling problem.The fuzzy velocity profiles with crisp and fuzzy conditions at different spatial positions are in-vestigated using a robust double parametric form-based q-HASTM with its convergence analysis.The ob-tained results are compared with existing works in the literature to confirm the efficacy and effectiveness of the method.展开更多
Through the direct parameter approach, a solution for spacecraft attitude tracking is presented. First of all, the spacecraft attitude tracking control model is built up by the error equation of the second-order nonli...Through the direct parameter approach, a solution for spacecraft attitude tracking is presented. First of all, the spacecraft attitude tracking control model is built up by the error equation of the second-order nonlinear quaternion-based attitude system. Based on the control model, a suitable controller is designed by the direct parameter approach. Compared with other control strategies, the direct parameter approach can offer all degrees of freedom for the controller to satisfy the requirements for system properties and turn the original nonlinear system into closed-loop linear system. Furthermore, this paper optimizes the controller according to the robustness, limitation of controller output and closed-loop eigenvalue sensitivity. Putting the controller into the original system, the state response of the closed-loop system and the output of controller are plotted in Matlab to verify the availability and robustness of the controller. Therefore, the controlled spacecraft can achieve the goal of tracking on the mobile target with the external disturbance torque.展开更多
Nonlinear normal modes and a numerical iterative approach are applied to study the parametric vibrations of pipes conveying pulsating fluid as an example of gyroscopic continua.The nonlinear non-autonomous governing e...Nonlinear normal modes and a numerical iterative approach are applied to study the parametric vibrations of pipes conveying pulsating fluid as an example of gyroscopic continua.The nonlinear non-autonomous governing equations are transformed into a set of pseudo-autonomous ones by employing the harmonic balance method.The nonlinear normal modes are constructed by the invariant manifold method on the state space and a numerical iterative approach is adopted to obtain numerical solutions,in which two types of initial conditions for the modal coefficients are employed.The results show that both initial conditions can lead to fast convergence.The frequency-amplitude responses with some modal motions in phase space are obtained by the present iterative method.Quadrature phase difference and traveling waves are found in the time-domain complex modal analysis.展开更多
基金This project was supported by the Chinese National Natural Science Foundation under Grant (10372015).
文摘A simple parametric approach to design a full-order observer for matrix second-order linear systems with uncertain disturbance input in the matrixsecond-order framework is proposed. The basic idea is to minimize the H2 norm of the transfer function from disturbance to estimation error using the design degrees of freedom provided by a parametric approach in the observer design. Besides the design parameters, the eigenvalues of the closed-loop system are also optimized within desired regions on the left-half of the complex plane. Using the proposed approach, additional specifications can be easily achieved. A spring-mass system is using to show the effect of the proposed approaches.
基金supported by the National Natural Science Foundation of China (61074111)the Innovative Team Program of the National Natural Science Foundation of China (61021002)
文摘A robust task space tracking scheme is proposed for the free-flying space manipulator system. The dynamic equations of the system are derived via the law of momentum conservation, and then a linear state space representation is formulated by local linearization. A parametric approach is applied by using the eigenstructure assignment theory and the model reference method. A feedback stabilizing controller and a feedforward compensation controller are built based on the approach. Then an optimization procedure is followed after that to obtain the desired requirement and characteristics. Simulation results are presented to show the effectiveness of the proposed method.
基金The Ministry of Education,Science and Technological Development of the Republic of Serbia,No.TP 36008(451–02-68/2020/14/2000169).
文摘This research provides an exploration of a biomimetic approach in the process of designing a candelabra model using linear shaped leaves of a Bell flower.The design process described in this research contains two steps:biological and geometrical.In the first biological step,a proper model for the creation of an urban element was found from nature in a Bell flower(Campanula persicifolia L.).The upper leaves of the selected plant,which are small with a linear spear and sharpening at the top,were chosen for the modeling process.The second step included applying two geometrical methods,i.e.,Voronoi diagrams and Delaunay triangulation.A geometrical leaf form of the selected plant species and the modeling process were obtained using aparametric modeling software,Blender.Using different Blender plug-ins and modifiers,Delaunay triangulation and Voronoi diagram were implemented by marking the starting points on the leaf form in the image data source,adjusting the Delaunay triangulation parameters,and creating Voronoi diagrams in which the Voronoi points were located at the shortest distance from the edges of the Voronoi polygon.Consequently,a three dimensional model of a candelabra was developed through this study.
基金Sponsored by the Major Program of National Natural Science Foundation of China (Grant No.60710002)the Program for Changjiang Scholars and Innovative Research Team in University
文摘To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furthermore, the flight control problem is formulated as a robust model tracking control problem. And then, based on the robust parametric approach, eigenstructure assignment and reference model tracking theory, a parametric optimization method for robust controller design is presented. The simulation results show the effectiveness of the proposed approach.
文摘Insulation systems in high-voltage electric machines play a pivotal role in the reliable operation and longevity of the equipment.Mica-based insulation materials have proven to possess and maintain excellent dielectric properties in the long run and prevent premature insulation degradation.Numerous qualifications tests,such as voltage endurance,are outlined in IEC and IEEE standards.The authors,however,take a different parametric approach,opting for reliability assessment of insulation systems using derived three-parameter Weibull models.Therefore,instead of simple pass–fail criteria,empirical data is employed to determine failure rate probabilities quantitatively and objectively.Experimental data,including breakdown,dissipation factor,and partial discharge mea-surements,are used to construct the Weibull distribution model to predict fault and failure rates and calculate hazard functions.The rigorous examinations interpreted through the analytical model help assess insulation system resilience and particularly the impact of electrical field stress and mica content.Variation of electrical stress from 66.75 to 71.20 V/mil demonstrated how the mean time to failure of the system changed from 146.4 to 85.1 at 3 Un,hence identifying opportunities for design improvement and uncovering performance boundaries.Ultimately,the developed framework enhances comprehension of insulation system failure probabilities,guiding design decisions and ensuring a secure and reliable operation of electrical machines across applications.
基金Sponsored bythe National Natural Science Foundation of China (69574003 ,69904003)Research Fund for the Doctoral Programof the HigherEducation (RFDP)(1999000701)Advanced Ordnance Research Supporting Fund (YJ0267016)
文摘The robust stabilization problem (RSP) for a plant family P(s,δ,δ) having real parameter uncertainty δ will be tackled. The coefficients of the numerator and the denominator of P(s,δ,δ) are affine functions of δ with ‖δ‖p≤δ. The robust stabilization problem for P(s,δ,δ) is essentially to simultaneously stabilize the infinitely many members of P(s,δ,δ) by a fixed controller. A necessary solvability condition is that every member plant of P(s,δ,δ) must be stabilizable, that is, it is free of unstable pole-zero cancellation. The concept of stabilizability radius is introduced which is the maximal norm bound for δ so that every member plant is stabilizable. The stability radius δmax(C) of the closed-loop system composed of P(s,δ,δ) and the controller C(s) is the maximal norm bound such that the closed-loop system is robustly stable for all δ with ‖δ‖p<δmax(C). Using the convex parameterization approach it is shown that the maximal stability radius is exactly the stabilizability radius. Therefore, the RSP is solvable if and only if every member plant of P(s,δ,δ) is stabilizable.
文摘The nonlinear Kortewege-de Varies(KdV)equation is a functional description for modelling ion-acoustic waves in plasma,long internal waves in a density-stratified ocean,shallow-water waves and acoustic waves on a crystal lattice.This paper focuses on developing and analysing a resilient double parametric analytical approach for the nonlinear fuzzy fractional KdV equation(FFKdVE)under gH-differentiability of Caputo fractional order,namely the q-Homotopy analysis method with the Shehu transform(q-HASTM).A triangular fuzzy number describes the Caputo fractional derivative of orderα,0<α≤1,for modelling problem.The fuzzy velocity profiles with crisp and fuzzy conditions at different spatial positions are in-vestigated using a robust double parametric form-based q-HASTM with its convergence analysis.The ob-tained results are compared with existing works in the literature to confirm the efficacy and effectiveness of the method.
基金supported by National Natural Science Foundation of China(No.61321062)
文摘Through the direct parameter approach, a solution for spacecraft attitude tracking is presented. First of all, the spacecraft attitude tracking control model is built up by the error equation of the second-order nonlinear quaternion-based attitude system. Based on the control model, a suitable controller is designed by the direct parameter approach. Compared with other control strategies, the direct parameter approach can offer all degrees of freedom for the controller to satisfy the requirements for system properties and turn the original nonlinear system into closed-loop linear system. Furthermore, this paper optimizes the controller according to the robustness, limitation of controller output and closed-loop eigenvalue sensitivity. Putting the controller into the original system, the state response of the closed-loop system and the output of controller are plotted in Matlab to verify the availability and robustness of the controller. Therefore, the controlled spacecraft can achieve the goal of tracking on the mobile target with the external disturbance torque.
基金This study was partially funded by the National Natural Science Foundation of China(Grant Nos.11672189,11672007)the postdoctoral fund of Beijing Chaoyang District(Grant No.Q5001015201602)+3 种基金the Program Funded by Liaoning Province Education Administration(Grant No.L2016010)Prof.X.-D.Yang was founded by the Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education,Northeastern University(VCAME201601)Prof.Melnik was funded by the Natural Sciences and Engineering Research Council(NSERC)of Canada,the Canada Research Chair(CRC)program,and the Bizkaia Talent Grant under the Basque Government through the BERC 2014-2017 programas well as Spanish Ministry of Economy and Competitiveness MINECO:BCAM Severo Ochoa excellence accreditation SEV-2013-0323.
文摘Nonlinear normal modes and a numerical iterative approach are applied to study the parametric vibrations of pipes conveying pulsating fluid as an example of gyroscopic continua.The nonlinear non-autonomous governing equations are transformed into a set of pseudo-autonomous ones by employing the harmonic balance method.The nonlinear normal modes are constructed by the invariant manifold method on the state space and a numerical iterative approach is adopted to obtain numerical solutions,in which two types of initial conditions for the modal coefficients are employed.The results show that both initial conditions can lead to fast convergence.The frequency-amplitude responses with some modal motions in phase space are obtained by the present iterative method.Quadrature phase difference and traveling waves are found in the time-domain complex modal analysis.