Focusing on the design problem of high-performance radiators for planar motors in the wafer stage of the lithography machine,a thermal-fluid coupling optimization scheme based on parametric solid components was propos...Focusing on the design problem of high-performance radiators for planar motors in the wafer stage of the lithography machine,a thermal-fluid coupling optimization scheme based on parametric solid components was proposed.The mapping method between component parameters and pseudo-density values was established.An analytical solution for the sensitivity of pseudo-density to component parameters was given.The conjugate heat transfer function with the shallow channel approximation term was solved through the pseudo-density information.In the optimization example,circular components were selected,and the position and the size of solid components were chosen as design variables.In order to eliminate calculation errors caused by pseudo-density,an optimized pseudo-density field was converted into the result based on parametric components.Compared to the reference motor radiator,the average surface temperature rise of the optimized water-cooling motor radiator is reduced by 22.4%,which verifies the feasibility and effectiveness of the proposed method.展开更多
基金Supported by the National Natural Science Foundation of China(51677104)。
文摘Focusing on the design problem of high-performance radiators for planar motors in the wafer stage of the lithography machine,a thermal-fluid coupling optimization scheme based on parametric solid components was proposed.The mapping method between component parameters and pseudo-density values was established.An analytical solution for the sensitivity of pseudo-density to component parameters was given.The conjugate heat transfer function with the shallow channel approximation term was solved through the pseudo-density information.In the optimization example,circular components were selected,and the position and the size of solid components were chosen as design variables.In order to eliminate calculation errors caused by pseudo-density,an optimized pseudo-density field was converted into the result based on parametric components.Compared to the reference motor radiator,the average surface temperature rise of the optimized water-cooling motor radiator is reduced by 22.4%,which verifies the feasibility and effectiveness of the proposed method.