Estimations of parametric functions under a system of linear regression equations with correlated errors across equations involve many complicated operations of matrices and their generalized inverses. In the past sev...Estimations of parametric functions under a system of linear regression equations with correlated errors across equations involve many complicated operations of matrices and their generalized inverses. In the past several years, a useful tool -- the matrix rank method was utilized to simplify various complicated operations of matrices and their generalized inverses. In this paper, we use the matrix rank method to derive a variety of new algebraic and statistical properties for the best linear unbiased estimators (BLUEs) of parametric functions under the system. In particular, we give the necessary and sufficient conditions for some equalities, additive and block decompositions of BLUEs of parametric functions under the system to hold.展开更多
The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a ta...The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a target is completely determined by its dynamic characteristics.However,this is not true in the applications of road-target,sea-route-target or flight route-target tracking,where target trajectory shape is uncoupled with target velocity properties.In this paper,a new estimation algorithm based on separate modeling of target trajectory shape and dynamic characteristics is proposed.The trajectory of a target over a sliding window is described by a linear function of the arc length.To determine the unknown target trajectory,an augmented system is derived by denoting the unknown coefficients of the function as states in mileage coordinates.At every estimation cycle except the first one,the interaction(mixing)stage of the proposed algorithm starts from the latest estimated base state and a recalculated parameter vector,which is determined by the least squares(LS).Numerical experiments are conducted to assess the performance of the proposed algorithm.Simulation results show that the proposed algorithm can achieve better performance than the conventional coupled model-based algorithms in the presence of target maneuvers.展开更多
In this note, we obtain sharp Lp estimates of parametric Marcinkiewicz integral operators. Our result resolves a long standing open problem. Also, we present a class of parametric Marcinkiewicz integral operators that...In this note, we obtain sharp Lp estimates of parametric Marcinkiewicz integral operators. Our result resolves a long standing open problem. Also, we present a class of parametric Marcinkiewicz integral operators that are bounded provided that their kernels belong to the sole space L^1(S^n-1).展开更多
基金Supported by National Natural Science Foundation of China (Grant No. 70871073)
文摘Estimations of parametric functions under a system of linear regression equations with correlated errors across equations involve many complicated operations of matrices and their generalized inverses. In the past several years, a useful tool -- the matrix rank method was utilized to simplify various complicated operations of matrices and their generalized inverses. In this paper, we use the matrix rank method to derive a variety of new algebraic and statistical properties for the best linear unbiased estimators (BLUEs) of parametric functions under the system. In particular, we give the necessary and sufficient conditions for some equalities, additive and block decompositions of BLUEs of parametric functions under the system to hold.
基金supported by the National Natural Science Foundation of China(61671181).
文摘The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a target is completely determined by its dynamic characteristics.However,this is not true in the applications of road-target,sea-route-target or flight route-target tracking,where target trajectory shape is uncoupled with target velocity properties.In this paper,a new estimation algorithm based on separate modeling of target trajectory shape and dynamic characteristics is proposed.The trajectory of a target over a sliding window is described by a linear function of the arc length.To determine the unknown target trajectory,an augmented system is derived by denoting the unknown coefficients of the function as states in mileage coordinates.At every estimation cycle except the first one,the interaction(mixing)stage of the proposed algorithm starts from the latest estimated base state and a recalculated parameter vector,which is determined by the least squares(LS).Numerical experiments are conducted to assess the performance of the proposed algorithm.Simulation results show that the proposed algorithm can achieve better performance than the conventional coupled model-based algorithms in the presence of target maneuvers.
文摘In this note, we obtain sharp Lp estimates of parametric Marcinkiewicz integral operators. Our result resolves a long standing open problem. Also, we present a class of parametric Marcinkiewicz integral operators that are bounded provided that their kernels belong to the sole space L^1(S^n-1).