Spatial quantum optics based on the high-order transverse mode is important for the super-resolution measurement and quantum image beyond the shot noise level. Quantum entanglement of the transverse plane Hermite–Gau...Spatial quantum optics based on the high-order transverse mode is important for the super-resolution measurement and quantum image beyond the shot noise level. Quantum entanglement of the transverse plane Hermite–Gauss TEM(01) mode has been demonstrated experimentally in this paper. Two squeezed TEM(01) modes, which are generated by a pair of degenerate optical parametric amplifiers(DOPA) with the nonlinear crystals of periodically poled KTi OPO4, have been combined to produce TEM(01) mode entanglement using a beam splitter. The 1.5 dB for the sum of amplitude and 1.2 dB for the difference of phase below shot-noise level is achieved with the measurement system of a Bell state detection.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11504218 and 61108003)the Natural Science Foundation of Shanxi Province,China(Grant No.2013021005-2)
文摘Spatial quantum optics based on the high-order transverse mode is important for the super-resolution measurement and quantum image beyond the shot noise level. Quantum entanglement of the transverse plane Hermite–Gauss TEM(01) mode has been demonstrated experimentally in this paper. Two squeezed TEM(01) modes, which are generated by a pair of degenerate optical parametric amplifiers(DOPA) with the nonlinear crystals of periodically poled KTi OPO4, have been combined to produce TEM(01) mode entanglement using a beam splitter. The 1.5 dB for the sum of amplitude and 1.2 dB for the difference of phase below shot-noise level is achieved with the measurement system of a Bell state detection.