In aerospace engineering,design and optimization of mechanical structures are usually performed with respect to elastic limit.Besides causing insufcient use of the material,such design concept fails to meet the ever g...In aerospace engineering,design and optimization of mechanical structures are usually performed with respect to elastic limit.Besides causing insufcient use of the material,such design concept fails to meet the ever growing needs of the light weight design.To remedy this problem,in the present study,a shakedown theory based numerical approach for performing parametric optimization is presented.Within this approach,strength of the structure is measured by its shakedown limit calculated from the direct method.The numerical method developed for the structural optimization consists of nested loops:the inner loop adopts the interior point method to solve shakedown problems pertained to fxed design parameters,while the outer loop employs the genetic algorithm to fnd optimal design parameters leading to the greatest shakedown limit.The method established is frst verifed by the classic plate-with-a-circular-hole example,and after that it is applied to an airtight module for determining few key design parameters.By carefully analyzing results generated during the optimization process,it is convinced that the approach can become a viable means for designing similar aerospace structures.展开更多
The divertor target components for the Chinese fusion engineering test reactor(CFETR)and the future experimental advanced superconducting tokamak(EAST)need to remove a heat flux of up to20 MW m-2.In view of such a hig...The divertor target components for the Chinese fusion engineering test reactor(CFETR)and the future experimental advanced superconducting tokamak(EAST)need to remove a heat flux of up to20 MW m-2.In view of such a high heat flux removal requirement,this study proposes a conceptual design for a flat-tile divertor target based on explosive welding and brazing technology.Rectangular water-cooled channels with a special thermal transfer structure(TTS)are designed in the heat sink to improve the flat-tile divertor target’s heat transfer performance(HTP).The parametric design and optimization methods are applied to study the influence of the TTS variation parameters,including height(H),width(W*),thickness(T),and spacing(L),on the HTP.The research results show that the flat-tile divertor target’s HTP is sensitive to the TTS parameter changes,and the sensitivity is T>L>W*>H.The HTP first increases and then decreases with the increase of T,L,and W*and gradually increases with the increase of H.The optimal design parameters are as follows:H=5.5 mm,W*=25.8 mm,T=2.2 mm,and L=9.7 mm.The HTP of the optimized flat-tile divertor target at different flow speeds and tungsten tile thicknesses is studied using the numerical simulation method.A flat-tile divertor mock-up is developed according to the optimized parameters.In addition,high heat flux(HHF)tests are performed on an electron beam facility to further investigate the mock-up HTP.The numerical simulation calculation results show that the optimized flat-tile divertor target has great potential for handling the steady-state heat load of 20 MW m-2under the tungsten tile thickness<5 mm and the flow speed7 m s^(-1).The heat transfer efficiency of the flat-tile divertor target with rectangular cooling channels improves by13%and30%compared to that of the flat-tile divertor target with circular cooling channels and the ITER-like monoblock,respectively.The HHF tests indicate that the flat-tile divertor mock-up can successfully withstand 1000 cycles of20 MW m-2of heat load without visible deformation,damage,and HTP degradation.The surface temperature of the flat-tile divertor mock-up at the 1000th cycle is only930℃.The flat-tile divertor target’s HTP is greatly improved by the parametric design and optimization method,and is better than the ITER-like monoblock and the flat-tile mock-up for the WEST divertor.This conceptual design is currently being applied to the engineering design of the CFETR and EAST flat-tile divertors.展开更多
A metamaterial plate is designed by embedding a periodic array of local nonlinear resonators for its supersonic flutter control.Based on the von Karman large deformation theory and supersonic piston aerodynamic theory...A metamaterial plate is designed by embedding a periodic array of local nonlinear resonators for its supersonic flutter control.Based on the von Karman large deformation theory and supersonic piston aerodynamic theory,the nonlinear aeroelastic equations of the metamaterial plate are obtained by using the Hamilton principle.The comparisons for aeroelastic behaviors of the metamaterial plate and pure plate show that the proposed metamaterial plate can lead to an enlarged flutter boundary and lower vibration amplitude.Furthermore,a parametric optimization strategy for local nonlinear resonators is proposed to improve the nonlinear flutter behaviors of the metamaterial plate,and a significant enhancement of passive control performance can be achieved through optimization design.The present study demonstrates that the design of the metamaterial plate can provide an effective approach and potential application for nonlinear flutter suppression of supersonic plate.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.52075033)Fundamental Research Funds for the Central Universities of China(Grant No.2020RC202).
文摘In aerospace engineering,design and optimization of mechanical structures are usually performed with respect to elastic limit.Besides causing insufcient use of the material,such design concept fails to meet the ever growing needs of the light weight design.To remedy this problem,in the present study,a shakedown theory based numerical approach for performing parametric optimization is presented.Within this approach,strength of the structure is measured by its shakedown limit calculated from the direct method.The numerical method developed for the structural optimization consists of nested loops:the inner loop adopts the interior point method to solve shakedown problems pertained to fxed design parameters,while the outer loop employs the genetic algorithm to fnd optimal design parameters leading to the greatest shakedown limit.The method established is frst verifed by the classic plate-with-a-circular-hole example,and after that it is applied to an airtight module for determining few key design parameters.By carefully analyzing results generated during the optimization process,it is convinced that the approach can become a viable means for designing similar aerospace structures.
基金supported by the National MCF Energy R&D Program(No.2018YFE0312300)the National Key Research and Development Program of China(No.2017YFA0402500)the Science Foundation of the Institute of Plasma Physics,Chinese Academy of Sciences(No.Y45ETY2302)。
文摘The divertor target components for the Chinese fusion engineering test reactor(CFETR)and the future experimental advanced superconducting tokamak(EAST)need to remove a heat flux of up to20 MW m-2.In view of such a high heat flux removal requirement,this study proposes a conceptual design for a flat-tile divertor target based on explosive welding and brazing technology.Rectangular water-cooled channels with a special thermal transfer structure(TTS)are designed in the heat sink to improve the flat-tile divertor target’s heat transfer performance(HTP).The parametric design and optimization methods are applied to study the influence of the TTS variation parameters,including height(H),width(W*),thickness(T),and spacing(L),on the HTP.The research results show that the flat-tile divertor target’s HTP is sensitive to the TTS parameter changes,and the sensitivity is T>L>W*>H.The HTP first increases and then decreases with the increase of T,L,and W*and gradually increases with the increase of H.The optimal design parameters are as follows:H=5.5 mm,W*=25.8 mm,T=2.2 mm,and L=9.7 mm.The HTP of the optimized flat-tile divertor target at different flow speeds and tungsten tile thicknesses is studied using the numerical simulation method.A flat-tile divertor mock-up is developed according to the optimized parameters.In addition,high heat flux(HHF)tests are performed on an electron beam facility to further investigate the mock-up HTP.The numerical simulation calculation results show that the optimized flat-tile divertor target has great potential for handling the steady-state heat load of 20 MW m-2under the tungsten tile thickness<5 mm and the flow speed7 m s^(-1).The heat transfer efficiency of the flat-tile divertor target with rectangular cooling channels improves by13%and30%compared to that of the flat-tile divertor target with circular cooling channels and the ITER-like monoblock,respectively.The HHF tests indicate that the flat-tile divertor mock-up can successfully withstand 1000 cycles of20 MW m-2of heat load without visible deformation,damage,and HTP degradation.The surface temperature of the flat-tile divertor mock-up at the 1000th cycle is only930℃.The flat-tile divertor target’s HTP is greatly improved by the parametric design and optimization method,and is better than the ITER-like monoblock and the flat-tile mock-up for the WEST divertor.This conceptual design is currently being applied to the engineering design of the CFETR and EAST flat-tile divertors.
基金supported by the National Natural Science Foundation of China(No.11972296)the Overseas Expertise Introduction Project for Discipline Innovation,China(111 Project,No.BP0719007)。
文摘A metamaterial plate is designed by embedding a periodic array of local nonlinear resonators for its supersonic flutter control.Based on the von Karman large deformation theory and supersonic piston aerodynamic theory,the nonlinear aeroelastic equations of the metamaterial plate are obtained by using the Hamilton principle.The comparisons for aeroelastic behaviors of the metamaterial plate and pure plate show that the proposed metamaterial plate can lead to an enlarged flutter boundary and lower vibration amplitude.Furthermore,a parametric optimization strategy for local nonlinear resonators is proposed to improve the nonlinear flutter behaviors of the metamaterial plate,and a significant enhancement of passive control performance can be achieved through optimization design.The present study demonstrates that the design of the metamaterial plate can provide an effective approach and potential application for nonlinear flutter suppression of supersonic plate.