Owing to the low contents of their acid-insoluble components, carbonate rocks tend to decrease sharply in volume in association with the formation of weathering crust. The formation of a 1 m-thick weathering crust wou...Owing to the low contents of their acid-insoluble components, carbonate rocks tend to decrease sharply in volume in association with the formation of weathering crust. The formation of a 1 m-thick weathering crust would usually consume more than ten meters to several tens of meters of thickness of parent rocks. The knowledge of how to identify the homogeneity of parent rocks is essential to understand the formation mechanism of weathering crust in karst regions, especially that of thick-layered red weathering crust. In this work the grain-size analyses have demonstrated that the three profiles studied are the residual weathering crust of carbonate rocks and further showed that there objectively exists the heterogeneity of parent rocks in the three studied weathering crusts. The heterogeneity of parent rocks can also be reflected m geochemical parameters of major elements, just as the characteristics of frequency plot of grain-size distribution. Conservative trace element ratios Zr/Hf and Nb/Ta are proven to be unsuitable for tracing the heterogeneity of parent rocks of weathering crust, but its geochemical mechanism is unclear. The authors strongly suggest in this paper that the identification of the homogeneity of parent rocks of weathering crust in karst regions is of prime necessity.展开更多
This study focuses on tuffaceous clastic rocks of the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin.It aims to explore the influence of sedimentation and parent rock on this kind of res...This study focuses on tuffaceous clastic rocks of the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin.It aims to explore the influence of sedimentation and parent rock on this kind of reservoir development.The results show that the tuffaceous components formed by the denudation of ultramafic and mafic rocks can transform into chlorite coating or hematite,while those from intermediate rock denudation can be dissolved or transformed into illite.Sedimentary facies and lithofacies are essential in controlling the evolutionary result of tuffaceous components.Matrix-supported medium conglomerate and grain-supported medium-fine conglomerate that developed in the fan delta plain,with a closed original geochemical systems,have been in the oxidizing environment for a long time.The tuffaceous matrices mainly transforms into hematite or illite.These minerals occupy the primary pores and are difficult to dissolve by felsic fluids,which inhibits the development of high-quality reservoirs.The grain-supported sandy fine conglomerate developed in the fan delta front was in the underwater reductive environment with an open original geochemical system.The tuffaceous matrices not only can transform into chlorite coating to strengthen the particle's compaction resistance,but also can be fully dissolved,which promotes the formation of high-quality reservoirs.展开更多
基金This work was jointly supported by the Knowledge-Innovation Project of the Institute of Geochemistry,the“Westerm Light”Program sponsored by the Chinese Academy of Sciencesthe National Natural Science Foundation of China grants 49833002,40273015 and 40371012.
文摘Owing to the low contents of their acid-insoluble components, carbonate rocks tend to decrease sharply in volume in association with the formation of weathering crust. The formation of a 1 m-thick weathering crust would usually consume more than ten meters to several tens of meters of thickness of parent rocks. The knowledge of how to identify the homogeneity of parent rocks is essential to understand the formation mechanism of weathering crust in karst regions, especially that of thick-layered red weathering crust. In this work the grain-size analyses have demonstrated that the three profiles studied are the residual weathering crust of carbonate rocks and further showed that there objectively exists the heterogeneity of parent rocks in the three studied weathering crusts. The heterogeneity of parent rocks can also be reflected m geochemical parameters of major elements, just as the characteristics of frequency plot of grain-size distribution. Conservative trace element ratios Zr/Hf and Nb/Ta are proven to be unsuitable for tracing the heterogeneity of parent rocks of weathering crust, but its geochemical mechanism is unclear. The authors strongly suggest in this paper that the identification of the homogeneity of parent rocks of weathering crust in karst regions is of prime necessity.
基金supported by the National Natural Science Foundation of China(Grant Nos.42172109,41872113,42172108)China National Petroleum Corporation-China University of Petroleum(Beijing)Strategic Cooperation Science and Technology Project(Grant No.ZLZX2020-02)+1 种基金State's Key Project of Research and Development Plan(Grant No.2018YFA0702405)Science Foundation of China University of Petroleum(Beijing)(Grant Nos.2462020BJRC002,2462020YXZZ020)。
文摘This study focuses on tuffaceous clastic rocks of the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin.It aims to explore the influence of sedimentation and parent rock on this kind of reservoir development.The results show that the tuffaceous components formed by the denudation of ultramafic and mafic rocks can transform into chlorite coating or hematite,while those from intermediate rock denudation can be dissolved or transformed into illite.Sedimentary facies and lithofacies are essential in controlling the evolutionary result of tuffaceous components.Matrix-supported medium conglomerate and grain-supported medium-fine conglomerate that developed in the fan delta plain,with a closed original geochemical systems,have been in the oxidizing environment for a long time.The tuffaceous matrices mainly transforms into hematite or illite.These minerals occupy the primary pores and are difficult to dissolve by felsic fluids,which inhibits the development of high-quality reservoirs.The grain-supported sandy fine conglomerate developed in the fan delta front was in the underwater reductive environment with an open original geochemical system.The tuffaceous matrices not only can transform into chlorite coating to strengthen the particle's compaction resistance,but also can be fully dissolved,which promotes the formation of high-quality reservoirs.