Microplastics (MPs) have been an emerging concern due to their harmful effects on the ecosystem and are ubiquitous in various habitats, from marine to terrestrial environments. However, studies on the presence of MPs ...Microplastics (MPs) have been an emerging concern due to their harmful effects on the ecosystem and are ubiquitous in various habitats, from marine to terrestrial environments. However, studies on the presence of MPs in recreational areas are limited. One of the previous works has reported that urban recreational parks are considered “sinks” for plastic debris, including MPs. In this study, low-density MPs (LD-MPs) in soil samples collected from recreational parks of Al Ain, United Arab Emirates (UAE) were isolated by density flotation method. Results showed that these parks have varying levels of LD-MPs caused by various anthropogenic activities, such as sludge use and application of reclaimed water from wastewater treatment facilities in those areas. These plastic particles were isolated in 87% of the soil samples, with an average concentration of 1550 ± 340 MPs/kg. Predominantly, these comprised large LD-MPs (300 - 5000 μm), with red and blue being the most common colors. Fourier transform infrared (FTIR) spectroscopy identified possible synthetic polymers, including polyethylene and polypropylene. Additionally, a negative correlation was observed between LD-MP concentration and soil pH and moisture content, indicating potential adverse effects on soil health. These findings highlight the need for monitoring and managing microplastic pollution in urban recreational areas to mitigate its ecological impacts.展开更多
Levels ofCu, Ni, Zn, Pb and Cr were measured in soils and trees in urban Guangzhou, China. Tree and soil samples were collected from the roadside, urban parks and a university campus. Mean concentrations of Cu, Ni, Zn...Levels ofCu, Ni, Zn, Pb and Cr were measured in soils and trees in urban Guangzhou, China. Tree and soil samples were collected from the roadside, urban parks and a university campus. Mean concentrations of Cu, Ni, Zn, Pb and Cr in tree leaves were 28.3, 7.7, 142.1, 23.4, and 195.1 mg/kg respectively. In a comparison of heavy metal concentrations in tree leaves between roads and park locations, only Pb concentrations were significantly higher in the former. Heavy metal concentrations were lower in the roots compared to leaves. It indicated that heavy metal pollution of trees is mainly from air pollution, For all top soil samples the mean concentrations of Cu, Ni, Zn, Pb and Cr were 24.3, 17.3, 121.5, 63.9 and 88.7 mg/kg, respectively. Heavy metal concentrations in roadside soils were higher and their coefficient of variation was higher than those in urban parks. Comparing heavy metal concentrations in trees and soil between urban Guangzhou and Hainan Island, China, Cu, Ni, Zn, Pb and Cr levels in soils and plants in urban Guangzhou were evidently affected by the human impact. However the heavy metal content in the soil compared to some international standards do not give cause for concern. Some observations on the implications of the data for environmental monitoring are made.展开更多
Soil properties and their tempo-spatial heterogeneity, affected by visitors’ pressure, season and soil depth, were studied in an urban park in Tel-Aviv. Soil was sampled twice yearly in wet and dry seasons. In each s...Soil properties and their tempo-spatial heterogeneity, affected by visitors’ pressure, season and soil depth, were studied in an urban park in Tel-Aviv. Soil was sampled twice yearly in wet and dry seasons. In each season soil was sampled from areas exposed to differing levels of visitors’ pressure (VP), and designated “no VP (Control)”, “High VP” and “Low VP”. The soil samples were taken from two depths. For each soil sample, moisture, organic matter and soluble-ion contents, pH, and electrical conductivity were determined. It was found that different properties were differently affected by VP, seasonal dynamics and soil depth: organic matter content, penetration depth and sodium concentration were the most sensitive to VP;Soil moisture did not respond to VP, but sharply reflected seasonal changes;Calcium and organic matter contents were significantly affected by the soil depth. The sensitivity of soil properties to VP increased from March to July, and the upper soil layer was more sensitive to seasonal dynamics and VP than the deeper layer. Some soil properties exhibited “spotty” patterns;others a “frontal” one. Organic matter content was completely controlled by VP at both depths and in both seasons, and could be used as an indicator of soil status in recreation areas. Visitors’ activities included trampling and other anthropogenic factors that enhanced the spatial changes and seasonal dynamics of soil properties. Based on these measurements the intensity of soil degradation and dynamics was evaluated and used to describe the soil status in an urban park.展开更多
Pollution index is a powerful tool for ecological geochemistry assessment. The commonly used pollution indices by heavy metals in soils and sediments were classified as two types of single index and integrated index i...Pollution index is a powerful tool for ecological geochemistry assessment. The commonly used pollution indices by heavy metals in soils and sediments were classified as two types of single index and integrated index in an algorithm point of view. Four single indices of contamination factor (or concentration factor), ecological risk factor, enrichment factor, and index of geo-accumulation were illustrated, and the reference values for calculating single indices were distinguished into background levels and threshold pollution values. Eight integrated indices were divided into two groups. One group is suitable for the normal distribution single indices including the sum, average, weighted average, vector modulus, and Nemerow pollution indices, and the other for log-normal distribution including the product, root of product, and weighted power product pollution indices. Using background levels as reference values, five contamination classes were divided, and the terminologies are suggested for the single and integrated indices to unify the assessment results. Software of EGAPI was developed in a single document interface to calculate the four single and eight integrated indices by heavy metals to assess the quality of soil and sediment ecological geochemistry. Pollution indices by heavy metals of Cu, Pb, and Zn in soils in parks of Beijing were calculated using EGAPI software, and these five contamination classes and terminologies suggested in this study were evaluated and used. Results of integrated indices of Cu, Pb, and Zn in soils indicated that the soil qualities are unpolluted as a whole and varied from low polluted to unpolluted status from the center to the outskirts of Beijing City.展开更多
The present study was designed to assess lead levels in playground soil and accumulated dust on playground equipment and then correlate those environmental lead measurements with children’s blood lead in the surround...The present study was designed to assess lead levels in playground soil and accumulated dust on playground equipment and then correlate those environmental lead measurements with children’s blood lead in the surrounding neighborhoods. Soil lead and surface dust were collected from 14 playgrounds in Muncie, Indiana, and blood lead levels were calculated for nearby children. Correlation analyses revealed a moderate positive association between dust Pb and soil Pb with a correlation coefficient r = 0.46 (p = 0.099). The relationship between settled dust on playground equipment and composite blood lead level also showed a medium positive correlation, indicated by r = 0.36 (p = 0.202). A positive correlation was also observed between soil Pb and composite blood lead values, as evidenced by r = 0.51 (p = 0.061). Furthermore, the assessment of spatial autocorrelation using Moran’s I index indicated no significant spatial clustering for the variables studied (dust Pb, soil Pb, and blood Pb). Correlation analysis showed a connection between lead levels in soil and dust, but no significant links were found between soil lead and blood lead and between dust lead and blood lead. These results suggest that environmental lead in parks has a limited impact on children’s blood lead levels nearby. Spatial autocorrelation analysis also revealed no significant spatial patterns among variables—dust, soil, and blood lead. Given these findings, it is recommended to seek expertise from qualified professionals and further perform comprehensive testing and analysis to investigate potential lead sources in children’s blood. The outcomes of this study offer valuable insights into assessing playground environmental lead contamination, contributing to future research priorities in this area. Specifically, future studies could focus on collecting larger sample sizes and characterizing blood lead in children who frequently use playgrounds rather than those who live nearby but may or may not use the playgrounds.展开更多
The runoff and soil loss were assessed <em>in situ</em> at the scale of 2.12 m<sup>2</sup> plots during the rainy season of 2010 to better understand the determinants and magnitude of the massi...The runoff and soil loss were assessed <em>in situ</em> at the scale of 2.12 m<sup>2</sup> plots during the rainy season of 2010 to better understand the determinants and magnitude of the massive soil loss and land subsidence (donga) in the sub-humid zone of Africa in Karimama, North Benin. The experimental design was a split plot with two factors: the topography in 3 modalities (upstream, center and downstream of the donga) was assigned as main plot factor and the degree of degradation of dongas in 2 modalities (beginner dongas and advanced dongas) was assigned as subplot factor. Runoff water was collected through a storage system composed of two tanks. Data were collected on 36 plots (9 plots per donga × 4 dongas). The runoff varies significantly from one site to another for the rainy episode of October 10, 2010. It is twice as high in land use areas (5.87 mm) as in W Park (2.32 mm;l.s.d. = 1.81 mm). From upstream to downstream, runoff and soil loss increased from 2.4 mm to 85.3 mm and 80 g<span style="white-space:nowrap;">·</span>m<sup>-2</sup> to 197 g<span style="white-space:nowrap;">·</span>m<sup>-2</sup>, respectively. Runoff is high in the early dongas (7.60 mm) and low in the advanced dongas (5.68 mm) in contrast to lower soil loss in the early dongas (34 g<span style="white-space:nowrap;">·</span>m<sup>-2</sup>) and high in the advanced dongas (237 g<span style="white-space:nowrap;">·</span>m<sup>-2</sup>). The low value of soil loss with respect to the magnitude of the phenomenon suggests the probable occurrence of other soil loss mechanisms to be elucidated.展开更多
Geophagy is the deliberate consumption of earth materials such as soils,clays or sediments by human and animals.The ingested soil is chosen based on its physical,chemical,and mineralogical nature.Early studies reveal ...Geophagy is the deliberate consumption of earth materials such as soils,clays or sediments by human and animals.The ingested soil is chosen based on its physical,chemical,and mineralogical nature.Early studies reveal that geophagy functions through(1) adsorption/absorption of ingested toxic plant compounds onto clay particles,(2)mineral supplementation (Na,Mn,K,and S as the possible candidates),and(3)展开更多
文摘Microplastics (MPs) have been an emerging concern due to their harmful effects on the ecosystem and are ubiquitous in various habitats, from marine to terrestrial environments. However, studies on the presence of MPs in recreational areas are limited. One of the previous works has reported that urban recreational parks are considered “sinks” for plastic debris, including MPs. In this study, low-density MPs (LD-MPs) in soil samples collected from recreational parks of Al Ain, United Arab Emirates (UAE) were isolated by density flotation method. Results showed that these parks have varying levels of LD-MPs caused by various anthropogenic activities, such as sludge use and application of reclaimed water from wastewater treatment facilities in those areas. These plastic particles were isolated in 87% of the soil samples, with an average concentration of 1550 ± 340 MPs/kg. Predominantly, these comprised large LD-MPs (300 - 5000 μm), with red and blue being the most common colors. Fourier transform infrared (FTIR) spectroscopy identified possible synthetic polymers, including polyethylene and polypropylene. Additionally, a negative correlation was observed between LD-MP concentration and soil pH and moisture content, indicating potential adverse effects on soil health. These findings highlight the need for monitoring and managing microplastic pollution in urban recreational areas to mitigate its ecological impacts.
基金The National Natural Science Foundation of China (No. 49571064) and the Natural Science Foundation of Guangdong Province(No.021740)
文摘Levels ofCu, Ni, Zn, Pb and Cr were measured in soils and trees in urban Guangzhou, China. Tree and soil samples were collected from the roadside, urban parks and a university campus. Mean concentrations of Cu, Ni, Zn, Pb and Cr in tree leaves were 28.3, 7.7, 142.1, 23.4, and 195.1 mg/kg respectively. In a comparison of heavy metal concentrations in tree leaves between roads and park locations, only Pb concentrations were significantly higher in the former. Heavy metal concentrations were lower in the roots compared to leaves. It indicated that heavy metal pollution of trees is mainly from air pollution, For all top soil samples the mean concentrations of Cu, Ni, Zn, Pb and Cr were 24.3, 17.3, 121.5, 63.9 and 88.7 mg/kg, respectively. Heavy metal concentrations in roadside soils were higher and their coefficient of variation was higher than those in urban parks. Comparing heavy metal concentrations in trees and soil between urban Guangzhou and Hainan Island, China, Cu, Ni, Zn, Pb and Cr levels in soils and plants in urban Guangzhou were evidently affected by the human impact. However the heavy metal content in the soil compared to some international standards do not give cause for concern. Some observations on the implications of the data for environmental monitoring are made.
文摘Soil properties and their tempo-spatial heterogeneity, affected by visitors’ pressure, season and soil depth, were studied in an urban park in Tel-Aviv. Soil was sampled twice yearly in wet and dry seasons. In each season soil was sampled from areas exposed to differing levels of visitors’ pressure (VP), and designated “no VP (Control)”, “High VP” and “Low VP”. The soil samples were taken from two depths. For each soil sample, moisture, organic matter and soluble-ion contents, pH, and electrical conductivity were determined. It was found that different properties were differently affected by VP, seasonal dynamics and soil depth: organic matter content, penetration depth and sodium concentration were the most sensitive to VP;Soil moisture did not respond to VP, but sharply reflected seasonal changes;Calcium and organic matter contents were significantly affected by the soil depth. The sensitivity of soil properties to VP increased from March to July, and the upper soil layer was more sensitive to seasonal dynamics and VP than the deeper layer. Some soil properties exhibited “spotty” patterns;others a “frontal” one. Organic matter content was completely controlled by VP at both depths and in both seasons, and could be used as an indicator of soil status in recreation areas. Visitors’ activities included trampling and other anthropogenic factors that enhanced the spatial changes and seasonal dynamics of soil properties. Based on these measurements the intensity of soil degradation and dynamics was evaluated and used to describe the soil status in an urban park.
基金the Project of China Geological Survey (No. 1212010610919)the State Key Laboratory of Geological Processes and Mineral Resources (No. GPMR200636).
文摘Pollution index is a powerful tool for ecological geochemistry assessment. The commonly used pollution indices by heavy metals in soils and sediments were classified as two types of single index and integrated index in an algorithm point of view. Four single indices of contamination factor (or concentration factor), ecological risk factor, enrichment factor, and index of geo-accumulation were illustrated, and the reference values for calculating single indices were distinguished into background levels and threshold pollution values. Eight integrated indices were divided into two groups. One group is suitable for the normal distribution single indices including the sum, average, weighted average, vector modulus, and Nemerow pollution indices, and the other for log-normal distribution including the product, root of product, and weighted power product pollution indices. Using background levels as reference values, five contamination classes were divided, and the terminologies are suggested for the single and integrated indices to unify the assessment results. Software of EGAPI was developed in a single document interface to calculate the four single and eight integrated indices by heavy metals to assess the quality of soil and sediment ecological geochemistry. Pollution indices by heavy metals of Cu, Pb, and Zn in soils in parks of Beijing were calculated using EGAPI software, and these five contamination classes and terminologies suggested in this study were evaluated and used. Results of integrated indices of Cu, Pb, and Zn in soils indicated that the soil qualities are unpolluted as a whole and varied from low polluted to unpolluted status from the center to the outskirts of Beijing City.
文摘The present study was designed to assess lead levels in playground soil and accumulated dust on playground equipment and then correlate those environmental lead measurements with children’s blood lead in the surrounding neighborhoods. Soil lead and surface dust were collected from 14 playgrounds in Muncie, Indiana, and blood lead levels were calculated for nearby children. Correlation analyses revealed a moderate positive association between dust Pb and soil Pb with a correlation coefficient r = 0.46 (p = 0.099). The relationship between settled dust on playground equipment and composite blood lead level also showed a medium positive correlation, indicated by r = 0.36 (p = 0.202). A positive correlation was also observed between soil Pb and composite blood lead values, as evidenced by r = 0.51 (p = 0.061). Furthermore, the assessment of spatial autocorrelation using Moran’s I index indicated no significant spatial clustering for the variables studied (dust Pb, soil Pb, and blood Pb). Correlation analysis showed a connection between lead levels in soil and dust, but no significant links were found between soil lead and blood lead and between dust lead and blood lead. These results suggest that environmental lead in parks has a limited impact on children’s blood lead levels nearby. Spatial autocorrelation analysis also revealed no significant spatial patterns among variables—dust, soil, and blood lead. Given these findings, it is recommended to seek expertise from qualified professionals and further perform comprehensive testing and analysis to investigate potential lead sources in children’s blood. The outcomes of this study offer valuable insights into assessing playground environmental lead contamination, contributing to future research priorities in this area. Specifically, future studies could focus on collecting larger sample sizes and characterizing blood lead in children who frequently use playgrounds rather than those who live nearby but may or may not use the playgrounds.
文摘The runoff and soil loss were assessed <em>in situ</em> at the scale of 2.12 m<sup>2</sup> plots during the rainy season of 2010 to better understand the determinants and magnitude of the massive soil loss and land subsidence (donga) in the sub-humid zone of Africa in Karimama, North Benin. The experimental design was a split plot with two factors: the topography in 3 modalities (upstream, center and downstream of the donga) was assigned as main plot factor and the degree of degradation of dongas in 2 modalities (beginner dongas and advanced dongas) was assigned as subplot factor. Runoff water was collected through a storage system composed of two tanks. Data were collected on 36 plots (9 plots per donga × 4 dongas). The runoff varies significantly from one site to another for the rainy episode of October 10, 2010. It is twice as high in land use areas (5.87 mm) as in W Park (2.32 mm;l.s.d. = 1.81 mm). From upstream to downstream, runoff and soil loss increased from 2.4 mm to 85.3 mm and 80 g<span style="white-space:nowrap;">·</span>m<sup>-2</sup> to 197 g<span style="white-space:nowrap;">·</span>m<sup>-2</sup>, respectively. Runoff is high in the early dongas (7.60 mm) and low in the advanced dongas (5.68 mm) in contrast to lower soil loss in the early dongas (34 g<span style="white-space:nowrap;">·</span>m<sup>-2</sup>) and high in the advanced dongas (237 g<span style="white-space:nowrap;">·</span>m<sup>-2</sup>). The low value of soil loss with respect to the magnitude of the phenomenon suggests the probable occurrence of other soil loss mechanisms to be elucidated.
文摘Geophagy is the deliberate consumption of earth materials such as soils,clays or sediments by human and animals.The ingested soil is chosen based on its physical,chemical,and mineralogical nature.Early studies reveal that geophagy functions through(1) adsorption/absorption of ingested toxic plant compounds onto clay particles,(2)mineral supplementation (Na,Mn,K,and S as the possible candidates),and(3)