Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adja...Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adjacent parking lots, which poses a safety threat to vehicles parked in these parking lots. However, previous studies have not addressed this issue. In this paper, we aim to evaluate the impact of parking deviation of existing vehicles next to the target parking lot(PDEVNTPL) on the automatic ego vehicle(AEV) parking, in terms of safety, comfort, accuracy, and efficiency of parking. A segmented parking training framework(SPTF) based on soft actor-critic(SAC) is proposed to improve parking performance. In the proposed method, the SAC algorithm incorporates strategy entropy into the objective function, to enable the AEV to learn parking strategies based on a more comprehensive understanding of the environment. Additionally, the SPTF simplifies complex parking tasks to maintain the high performance of deep reinforcement learning(DRL). The experimental results reveal that the PDEVNTPL has a detrimental influence on the AEV parking in terms of safety, accuracy, and comfort, leading to reductions of more than 27%, 54%, and 26%respectively. However, the SAC-based SPTF effectively mitigates this impact, resulting in a considerable increase in the parking success rate from 71% to 93%. Furthermore, the heading angle deviation is significantly reduced from 2.25 degrees to 0.43degrees.展开更多
With a surge in the university’s student and staff population, parking problems and congestion have rapidly intensified. The recent inclusion of women drivers, particularly during official working hours, has exacerba...With a surge in the university’s student and staff population, parking problems and congestion have rapidly intensified. The recent inclusion of women drivers, particularly during official working hours, has exacerbated these challenges. This pressing issue underscores the critical necessity for a structured approach to managing university entries and overseeing parking at the gates. The proposed smart parking management system aims to address these concerns by introducing a design concept that restricts unauthorized access and provides exclusive parking privileges to authorized users. Through image processing, the system identifies available parking spaces, relaying real-time information to users via a mobile application. This comprehensive solution also generates detailed reports (daily, weekly, and monthly), aiding university safety authorities in future gate management decisions.展开更多
Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking acc...Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.展开更多
Ensuring adequate access to truck parking is critical to the safe and efficient movement of freight traffic. There are strict federal guidelines for commercial truck driver rest periods. Rest areas and private truck s...Ensuring adequate access to truck parking is critical to the safe and efficient movement of freight traffic. There are strict federal guidelines for commercial truck driver rest periods. Rest areas and private truck stops are the only places for the trucks to stop legally and safely. In locations without sufficient parking areas, trucks often park on interstate ramps, which create safety risks for other interstate motorists. Historically, agencies have employed costly and time intensive manual counting methods, camera surveillance, and driver surveys to assess truck parking. Connected truck data, available in near real-time, offers an efficient alternative to practitioners to assess truck parking patterns and identify areas where there may be insufficient safe parking spaces. This paper presents a case study of interstate I-70 in east central Indiana and documents the observed spatiotemporal impacts of a rest area closure on truck parking on nearby interstate ramps. Results showed that there was a 28% increase in parking on ramps during the rest area closure. Analysis also found that ramps closest to the rest area were most impacted by the closure, seeing a rise in truck parking sessions as high as 2.7 times. Parking duration on the ramps during rest area closure also increased drastically. Although it was expected that this would result in increased parking by trucks on adjacent ramps, this before, during, after scenario provided an ideal scenario to evaluate the robustness of these techniques to assess changing parking characteristics of long-haul commercial trucks. The data analytics and visualization tools presented in this study are scalable nationwide and will aid stakeholders in informed data-driven decision making when allocating resources towards improving the nations commercial vehicle parking infrastructure.展开更多
Despite cities being recognized as being potential sources of microplastic pollution to the wider environment, most surveys of COVID-19 plastic-based litter have been undertaken through linear transects of marine beac...Despite cities being recognized as being potential sources of microplastic pollution to the wider environment, most surveys of COVID-19 plastic-based litter have been undertaken through linear transects of marine beaches. For the far fewer number of studies conducted on inland and urban locations, the site-specific focus has primarily been surveys along the length of streets. The present study is the first to specifically assess the standing stock (i.e., moment-in-time) of littered face masks for the entire surface area of urban parking lots. The density of face masks in 50 parking lots in a Canadian coastal town (0.00054 m2 ± 0.00051 m2) was found to be significantly greater than the background level of littering of town streets. Face mask density was significantly related to visitation “usage” of parking lots as gauged by the areal size of the lots and of their onsite buildings, as well as the number of vehicles present. Neither parking lot typology nor estimates of inferred export (various measures of wind exposure) and entrapment (various metrics of obstruction) of face masks had a significant influence on the extent of whole-lot littering. In consequence, modelling of the potential input of mask-derived microplastics to the marine environment from coastal communities can use the areal density of face masks found here in association with the total surface area of lots for individual municipalities as determined through GIS analysis.展开更多
The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle parti...The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle participation.However,instead of being an isolated module,the incentive mechanism usually interacts with other modules.Based on this,we capture this synergy and propose a Collision-free Parking Recommendation(CPR),a novel VCS system framework that integrates an incentive mechanism,a non-cooperative VCS game,and a multi-agent reinforcement learning algorithm,to derive an optimal parking strategy in real time.Specifically,we utilize an LSTM method to predict parking areas roughly for recommendations accurately.Its incentive mechanism is designed to motivate vehicle participation by considering dynamically priced parking tasks and social network effects.In order to cope with stochastic parking collisions,its non-cooperative VCS game further analyzes the uncertain interactions between vehicles in parking decision-making.Then its multi-agent reinforcement learning algorithm models the VCS campaign as a multi-agent Markov decision process that not only derives the optimal collision-free parking strategy for each vehicle independently,but also proves that the optimal parking strategy for each vehicle is Pareto-optimal.Finally,numerical results demonstrate that CPR can accomplish parking tasks at a 99.7%accuracy compared with other baselines,efficiently recommending parking spaces.展开更多
In recent years,disorderly parking and difficult charging of electric bicycles have been challenges in urban management.The rapid growth of electric bicycles is in contradiction with the lack of dedicated parking spac...In recent years,disorderly parking and difficult charging of electric bicycles have been challenges in urban management.The rapid growth of electric bicycles is in contradiction with the lack of dedicated parking spaces and charging service facilities in towns and villages.To solve the issue of parking and charging electric bicycles in limited urban and rural spaces,prefabricated building technology is applied to the design of a multi-story electric bicycle parking lot.The multi-story prefabricated electric bicycle parking lot is utilized in urban and rural planning and design to upgrade parking facilities in old urban areas,land-constrained commercial areas,as well as counties,towns,and rural areas with inadequate municipal facilities.Multi-story prefabricated electric bicycle parking lots are the application exploration of industrial buildings,and promote the high-quality development planning and construction of towns and counties and villages.Compared with the single-story metal charging station,the multi-story assembled electric bicycle parking lot has the characteristics of integrating parking and charging,being more durable and safer in structure,accommodating a large number of vehicles,and improving the space utilization rate.展开更多
In order to carry out comprehensive decision-making of multi-class shared parking measures within a region, a bilevel model assisting decision-making is proposed. The upper level selects parkers' average satisfaction...In order to carry out comprehensive decision-making of multi-class shared parking measures within a region, a bilevel model assisting decision-making is proposed. The upper level selects parkers' average satisfaction and the violation rate during peak hours as indices in object function, and sets probability distribution models describing dynamic parking demand of each site, the feasibility of shared parking scenarios and occupancy requirements during peak hours of each parking lot as restrictions. The simulation model in the lower level sets up rules to assign each parker in the random parking demand series to the proper parking lot. An iterative method is proposed to confirm the state of each parking lot at the start of formal simulations. Besides, two patterns linking initialization and formal simulation are presented to acquire multiple solutions. The results of the numerical examples indicate the effectiveness of the model and solution methods.展开更多
In order to improve the use efficiency of curb parking, a reasonable curb parking pricing is evaluated by considering individual parking choice behavior. The parking choice behavior is analyzed from micro-aspects, and...In order to improve the use efficiency of curb parking, a reasonable curb parking pricing is evaluated by considering individual parking choice behavior. The parking choice behavior is analyzed from micro-aspects, and the choice behavior utility function is established combining trip time, search time, waiting time, access time and parking fee. By the utility function, a probit-based parking choice behavior model is constructed. On the basis of these, the curb parking pricing model is deduced by considering the constrained conditions, and an incremental assignment algorithm of the model is also designed. Finally, the model is applied to the parking planning of Tongling city. It is pointed out that the average parking time of curb parking decreases 34%, and the average turnover rate increases 67% under the computed parking price system. The results show that the model can optimize the utilization of static traffic facilities.展开更多
Based on an available parking space occupancy (APSO) survey conducted in Nanjing, China, an APSO forecasting model is proposed. The APSO survey results indicate that the time series of APSO with different time-secti...Based on an available parking space occupancy (APSO) survey conducted in Nanjing, China, an APSO forecasting model is proposed. The APSO survey results indicate that the time series of APSO with different time-sections are periodical and self-similar, and the fluctuation of the APSO increases with the decrease in time-sections. Taking the short-time change behavior into account, an APSO forecasting model combined wavelet analysis and a weighted Markov chain is presented. In this model, an original APSO time series is first decomposed by wavelet analysis, and the results include low frequency signals representing the basic trends of APSO and several high frequency signals representing disturbances of the APSO. Then different Markov models are used to forecast the changes of low and high frequency signals, respectively. Finally, integrating the predicted results induces the final forecasted APSO. A case study verifies the applicability of the proposed model. The comparisons between measured and forecasted results show that the model is a competent model and its accuracy relies on real-time update of the APSO database.展开更多
This paper introduces a parking management system based on a wireless sensor network developed by our group. The system consists of a large amount of parking space monitoring nodes, a few parking guiding nodes, a sink...This paper introduces a parking management system based on a wireless sensor network developed by our group. The system consists of a large amount of parking space monitoring nodes, a few parking guiding nodes, a sink node and a management station. All the nodes exchange information with each other through wireless communication. The prototype of the parking management system has been implemented and the preliminary test results show that the performance of the system can satisfy the requirements of the application.展开更多
Analyzes the spatial structure of parking behavior and establishes a basic parking behavior model to represent the parking problem in downtown, and establishes a parking pricing model to analyze the parking equilibriu...Analyzes the spatial structure of parking behavior and establishes a basic parking behavior model to represent the parking problem in downtown, and establishes a parking pricing model to analyze the parking equilibrium with a positive parking fee and uses a paired combinatorial logit model to analyze the effect of trip integrative cost on parking behavior and concludes from empirical results that the parking behavior model performs well.展开更多
Parking into small berths remains difficult for unskilled drivers. Researchers had proposed different automatic parking systems to solve this problem. The first kind of strategies(called parking trajectory planning) d...Parking into small berths remains difficult for unskilled drivers. Researchers had proposed different automatic parking systems to solve this problem. The first kind of strategies(called parking trajectory planning) designs a detailed reference trajectory that links the start and ending points of a special parking task and let the vehicle track this reference trajectory so as to park into the berth. The second kind of strategies(called guidance control) just characterizes several regimes of driving actions as well as the important switching points in certain rule style and let the vehicle follows the pre-selected series of actions so as to park into the berth. Parking guidance control is simpler than parking trajectory planning. However, no studies thoroughly validated parking guidance control before. In this paper, a new automatic parking method is presented, which could characterize the desired control actions directly. Then the feasibility is examined carefully. Tests show that a simple parking guidance control strategy can work in most parallel parking tasks, if the available parking berth is not too small. This finding helps to build more concise automatic parking systems that can efficiently guide human drivers.展开更多
In order to solve the problem that the drivers can't find the optimal parking lot timely,a reservation based optimal parking lot recommendation model in Internet of Vehicle(IoV) environment is designed.Based on th...In order to solve the problem that the drivers can't find the optimal parking lot timely,a reservation based optimal parking lot recommendation model in Internet of Vehicle(IoV) environment is designed.Based on the users oriented parking information recommendation system,the model considers subjective demands of drivers comprehensively,makes a deeply analysis of the evaluation indicators.This recommendation model uses a phased selection method to calculate the optimal objective parking lot.The first stage is screening which based on the users' subjective parking demands;the second stage is processing the candidate parking lots through multiple attribute decision making.Simulation experiments show that this model can effectively solve the problems encountered in the process of finding optimal parking lot,save the driver's parking time and parking costs and also improve the overall utilization of parking facilities to ease the traffic congestion caused by vehicles parked patrol.展开更多
A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform(WT), artificial neural network(ANN) and forecasting strategies based on the changing characteristics of avail...A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform(WT), artificial neural network(ANN) and forecasting strategies based on the changing characteristics of available parking spaces(APS). First, several APS time series were decomposed and reconstituted by the wavelet transform. Then, using an artificial neural network, the following five strategies for multi-step-ahead time series forecasting were used to forecast the reconstructed time series: recursive strategy, direct strategy, multi-input multi-output(MIMO) strategy, DIRMO strategy(a combination of the direct and MIMO strategies), and newly proposed recursive multi-input multi-output(RECMO) strategy which is a combination of the recursive and MIMO strategies. Finally, integrating the predicted results with the reconstructed time series produced the final forecasted available parking spaces. Three findings appear to be consistently supported by the experimental results. First, applying the wavelet transform to multi-step ahead available parking spaces forecasting can effectively improve the forecasting accuracy. Second, the forecasting resulted from the DIRMO and RECMO strategies is more accurate than that of the other strategies. Finally, the RECMO strategy requires less model training time than the DIRMO strategy and consumes the least amount of training time among five forecasting strategies.展开更多
This paper aims to present an intelligent system for parking space detection based on image processing technique. The proposed system captures and processes the rounded image drawn at parking lot and produces the info...This paper aims to present an intelligent system for parking space detection based on image processing technique. The proposed system captures and processes the rounded image drawn at parking lot and produces the information of the empty car parking spaces. In this work, a camera is used as a sensor to take photos to show the occupancy of car parks. The reason why a camera is used is because with an image it can detect the presence of many cars at once. Also, the camera can be easily moved to detect different car parking lots. By having this image, the particular car parks vacant can be known and then the processed information was used to guide a driver to an available car park rather than wasting time to find one. The proposed system has been developed in both software and hardware platform. An automatic parking system is used to make the whole process of parking cars more efficient and less complex for both drivers and administrators.展开更多
To explore the parking pricing of multiple parking facilities, this paper proposes a bi-level programming model, in which the interactions between parking operators and travelers are explicitly considered. The upper-l...To explore the parking pricing of multiple parking facilities, this paper proposes a bi-level programming model, in which the interactions between parking operators and travelers are explicitly considered. The upper-level sub-model simulates the price decision-making behaviors of the parking operators whose objectives may vary under different operation regimes, such as monopoly market, oligopoly competition, and social optimum. The lower level represents a network equilibrium model that simulates how travelers choose modes, routes, and parking facilities. The proposed model is solved by a sensitivity based algorithm, and applied to a numerical experiment, in which three types of parking facilities are studied, i.e., the off-road parking lot, the curb parking lot, and the parking-and-ride (P&R) facility. The results show in oligopoly market that the level of parking price reaches the lowest point, nonetheless the social welfare decreases to the lowest simultaneously;and the share of P&R mode goes to the highest value, however the total network costs rise also to the highest. While the monopoly market and the social optimum regimes result in solutions of which P&R facilities suffer negative profits and have to be subsidized.展开更多
Aiming at solving pressing parking issues in the urban environment, a residential parking spaces sharing model was proposed in this study. In this model, firstly, the residential community pattern, the status of idle ...Aiming at solving pressing parking issues in the urban environment, a residential parking spaces sharing model was proposed in this study. In this model, firstly, the residential community pattern, the status of idle parking spaces, and the temporal and spatial characteristics of sharing parking had been analyzed. Next,in the convenience of modeling,medical institutions that have the most prominent parking problems were selected as the subject of study. Based on the K-S statistical analysis results and the actual parking sharing situation,it was observed that the residential parking sharing time satisfied the shifted negative exponential distribution( SNED). Finally,a probability model of shared service capacity based on the SNED and critical time condition was established. By applying the statistical analysis method,the time of vehicles passing in and out of parking spaces, the idle time of parking spaces, the shifted distribution parameters, and other important model parameters had been calibrated,which was leading to the algorithm of model. In addition,considering the feasibility of model without sufficient data,the vehicle travel probability,the stagnation rate of parking space,and the status of parking spaces were defined and the reference data were also provided. The results of case studies indicate that it is very promising to solve urban parking issues if the residential community shares its rich parking resources with adjacent commercial buildings.展开更多
基金supported by National Natural Science Foundation of China(52222215, 52272420, 52072051)。
文摘Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adjacent parking lots, which poses a safety threat to vehicles parked in these parking lots. However, previous studies have not addressed this issue. In this paper, we aim to evaluate the impact of parking deviation of existing vehicles next to the target parking lot(PDEVNTPL) on the automatic ego vehicle(AEV) parking, in terms of safety, comfort, accuracy, and efficiency of parking. A segmented parking training framework(SPTF) based on soft actor-critic(SAC) is proposed to improve parking performance. In the proposed method, the SAC algorithm incorporates strategy entropy into the objective function, to enable the AEV to learn parking strategies based on a more comprehensive understanding of the environment. Additionally, the SPTF simplifies complex parking tasks to maintain the high performance of deep reinforcement learning(DRL). The experimental results reveal that the PDEVNTPL has a detrimental influence on the AEV parking in terms of safety, accuracy, and comfort, leading to reductions of more than 27%, 54%, and 26%respectively. However, the SAC-based SPTF effectively mitigates this impact, resulting in a considerable increase in the parking success rate from 71% to 93%. Furthermore, the heading angle deviation is significantly reduced from 2.25 degrees to 0.43degrees.
文摘With a surge in the university’s student and staff population, parking problems and congestion have rapidly intensified. The recent inclusion of women drivers, particularly during official working hours, has exacerbated these challenges. This pressing issue underscores the critical necessity for a structured approach to managing university entries and overseeing parking at the gates. The proposed smart parking management system aims to address these concerns by introducing a design concept that restricts unauthorized access and provides exclusive parking privileges to authorized users. Through image processing, the system identifies available parking spaces, relaying real-time information to users via a mobile application. This comprehensive solution also generates detailed reports (daily, weekly, and monthly), aiding university safety authorities in future gate management decisions.
基金Supported by National Key R&D Program of China (Grant No.2021YFB2501800)National Natural Science Foundation of China (Grant No.52172384)+1 种基金Science and Technology Innovation Program of Hunan Province of China (Grant No.2021RC3048)State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle of China (Grant No.72275004)。
文摘Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.
文摘Ensuring adequate access to truck parking is critical to the safe and efficient movement of freight traffic. There are strict federal guidelines for commercial truck driver rest periods. Rest areas and private truck stops are the only places for the trucks to stop legally and safely. In locations without sufficient parking areas, trucks often park on interstate ramps, which create safety risks for other interstate motorists. Historically, agencies have employed costly and time intensive manual counting methods, camera surveillance, and driver surveys to assess truck parking. Connected truck data, available in near real-time, offers an efficient alternative to practitioners to assess truck parking patterns and identify areas where there may be insufficient safe parking spaces. This paper presents a case study of interstate I-70 in east central Indiana and documents the observed spatiotemporal impacts of a rest area closure on truck parking on nearby interstate ramps. Results showed that there was a 28% increase in parking on ramps during the rest area closure. Analysis also found that ramps closest to the rest area were most impacted by the closure, seeing a rise in truck parking sessions as high as 2.7 times. Parking duration on the ramps during rest area closure also increased drastically. Although it was expected that this would result in increased parking by trucks on adjacent ramps, this before, during, after scenario provided an ideal scenario to evaluate the robustness of these techniques to assess changing parking characteristics of long-haul commercial trucks. The data analytics and visualization tools presented in this study are scalable nationwide and will aid stakeholders in informed data-driven decision making when allocating resources towards improving the nations commercial vehicle parking infrastructure.
文摘Despite cities being recognized as being potential sources of microplastic pollution to the wider environment, most surveys of COVID-19 plastic-based litter have been undertaken through linear transects of marine beaches. For the far fewer number of studies conducted on inland and urban locations, the site-specific focus has primarily been surveys along the length of streets. The present study is the first to specifically assess the standing stock (i.e., moment-in-time) of littered face masks for the entire surface area of urban parking lots. The density of face masks in 50 parking lots in a Canadian coastal town (0.00054 m2 ± 0.00051 m2) was found to be significantly greater than the background level of littering of town streets. Face mask density was significantly related to visitation “usage” of parking lots as gauged by the areal size of the lots and of their onsite buildings, as well as the number of vehicles present. Neither parking lot typology nor estimates of inferred export (various measures of wind exposure) and entrapment (various metrics of obstruction) of face masks had a significant influence on the extent of whole-lot littering. In consequence, modelling of the potential input of mask-derived microplastics to the marine environment from coastal communities can use the areal density of face masks found here in association with the total surface area of lots for individual municipalities as determined through GIS analysis.
基金supported in part by the Natural Science Foundation of Shandong Province of China(ZR202103040180)the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-004the Fundamental Research Funds for the Central Universities under Grant 20CX05019A.
文摘The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle participation.However,instead of being an isolated module,the incentive mechanism usually interacts with other modules.Based on this,we capture this synergy and propose a Collision-free Parking Recommendation(CPR),a novel VCS system framework that integrates an incentive mechanism,a non-cooperative VCS game,and a multi-agent reinforcement learning algorithm,to derive an optimal parking strategy in real time.Specifically,we utilize an LSTM method to predict parking areas roughly for recommendations accurately.Its incentive mechanism is designed to motivate vehicle participation by considering dynamically priced parking tasks and social network effects.In order to cope with stochastic parking collisions,its non-cooperative VCS game further analyzes the uncertain interactions between vehicles in parking decision-making.Then its multi-agent reinforcement learning algorithm models the VCS campaign as a multi-agent Markov decision process that not only derives the optimal collision-free parking strategy for each vehicle independently,but also proves that the optimal parking strategy for each vehicle is Pareto-optimal.Finally,numerical results demonstrate that CPR can accomplish parking tasks at a 99.7%accuracy compared with other baselines,efficiently recommending parking spaces.
文摘In recent years,disorderly parking and difficult charging of electric bicycles have been challenges in urban management.The rapid growth of electric bicycles is in contradiction with the lack of dedicated parking spaces and charging service facilities in towns and villages.To solve the issue of parking and charging electric bicycles in limited urban and rural spaces,prefabricated building technology is applied to the design of a multi-story electric bicycle parking lot.The multi-story prefabricated electric bicycle parking lot is utilized in urban and rural planning and design to upgrade parking facilities in old urban areas,land-constrained commercial areas,as well as counties,towns,and rural areas with inadequate municipal facilities.Multi-story prefabricated electric bicycle parking lots are the application exploration of industrial buildings,and promote the high-quality development planning and construction of towns and counties and villages.Compared with the single-story metal charging station,the multi-story assembled electric bicycle parking lot has the characteristics of integrating parking and charging,being more durable and safer in structure,accommodating a large number of vehicles,and improving the space utilization rate.
基金The Planning Program of Science and Technology of Ministry of Housing and Urban-Rural Development of China (No. 2010-K5-16)
文摘In order to carry out comprehensive decision-making of multi-class shared parking measures within a region, a bilevel model assisting decision-making is proposed. The upper level selects parkers' average satisfaction and the violation rate during peak hours as indices in object function, and sets probability distribution models describing dynamic parking demand of each site, the feasibility of shared parking scenarios and occupancy requirements during peak hours of each parking lot as restrictions. The simulation model in the lower level sets up rules to assign each parker in the random parking demand series to the proper parking lot. An iterative method is proposed to confirm the state of each parking lot at the start of formal simulations. Besides, two patterns linking initialization and formal simulation are presented to acquire multiple solutions. The results of the numerical examples indicate the effectiveness of the model and solution methods.
基金The National Natural Science Foundation of China(No50308005), the National Basic Research Program of China (973Program) (No2006CB705500)
文摘In order to improve the use efficiency of curb parking, a reasonable curb parking pricing is evaluated by considering individual parking choice behavior. The parking choice behavior is analyzed from micro-aspects, and the choice behavior utility function is established combining trip time, search time, waiting time, access time and parking fee. By the utility function, a probit-based parking choice behavior model is constructed. On the basis of these, the curb parking pricing model is deduced by considering the constrained conditions, and an incremental assignment algorithm of the model is also designed. Finally, the model is applied to the parking planning of Tongling city. It is pointed out that the average parking time of curb parking decreases 34%, and the average turnover rate increases 67% under the computed parking price system. The results show that the model can optimize the utilization of static traffic facilities.
基金The National Natural Science Foundation of China(No50738001)the National Basic Research Program of China (973Program) (No2006CB705501)
文摘Based on an available parking space occupancy (APSO) survey conducted in Nanjing, China, an APSO forecasting model is proposed. The APSO survey results indicate that the time series of APSO with different time-sections are periodical and self-similar, and the fluctuation of the APSO increases with the decrease in time-sections. Taking the short-time change behavior into account, an APSO forecasting model combined wavelet analysis and a weighted Markov chain is presented. In this model, an original APSO time series is first decomposed by wavelet analysis, and the results include low frequency signals representing the basic trends of APSO and several high frequency signals representing disturbances of the APSO. Then different Markov models are used to forecast the changes of low and high frequency signals, respectively. Finally, integrating the predicted results induces the final forecasted APSO. A case study verifies the applicability of the proposed model. The comparisons between measured and forecasted results show that the model is a competent model and its accuracy relies on real-time update of the APSO database.
基金Supported by National Natural Science Foundation of P. R. China (60373049) National Basic Research Program of P.R.China (2006CB 3030000)
文摘This paper introduces a parking management system based on a wireless sensor network developed by our group. The system consists of a large amount of parking space monitoring nodes, a few parking guiding nodes, a sink node and a management station. All the nodes exchange information with each other through wireless communication. The prototype of the parking management system has been implemented and the preliminary test results show that the performance of the system can satisfy the requirements of the application.
文摘Analyzes the spatial structure of parking behavior and establishes a basic parking behavior model to represent the parking problem in downtown, and establishes a parking pricing model to analyze the parking equilibrium with a positive parking fee and uses a paired combinatorial logit model to analyze the effect of trip integrative cost on parking behavior and concludes from empirical results that the parking behavior model performs well.
基金supported in part by the National Key Research and Development Program of China(2018AAA0101400)the National Natural Science Foundation of China(61603005,61790565)the Joint Laboratory for Future Transport and Urban Computing of Amap
文摘Parking into small berths remains difficult for unskilled drivers. Researchers had proposed different automatic parking systems to solve this problem. The first kind of strategies(called parking trajectory planning) designs a detailed reference trajectory that links the start and ending points of a special parking task and let the vehicle track this reference trajectory so as to park into the berth. The second kind of strategies(called guidance control) just characterizes several regimes of driving actions as well as the important switching points in certain rule style and let the vehicle follows the pre-selected series of actions so as to park into the berth. Parking guidance control is simpler than parking trajectory planning. However, no studies thoroughly validated parking guidance control before. In this paper, a new automatic parking method is presented, which could characterize the desired control actions directly. Then the feasibility is examined carefully. Tests show that a simple parking guidance control strategy can work in most parallel parking tasks, if the available parking berth is not too small. This finding helps to build more concise automatic parking systems that can efficiently guide human drivers.
基金partially supported by the National Natural Science Foundation of China under Grants No.60903176the Provincial Natural Science Foundation of Shandong under Grants No.ZR2012FM010,No.ZR2010FQ028+1 种基金the Program for Youth science and technology starfund of Jinan No.TNK1108the Sub-Project of the National Key Technology R&D Program No.2012BAF12B07-3
文摘In order to solve the problem that the drivers can't find the optimal parking lot timely,a reservation based optimal parking lot recommendation model in Internet of Vehicle(IoV) environment is designed.Based on the users oriented parking information recommendation system,the model considers subjective demands of drivers comprehensively,makes a deeply analysis of the evaluation indicators.This recommendation model uses a phased selection method to calculate the optimal objective parking lot.The first stage is screening which based on the users' subjective parking demands;the second stage is processing the candidate parking lots through multiple attribute decision making.Simulation experiments show that this model can effectively solve the problems encountered in the process of finding optimal parking lot,save the driver's parking time and parking costs and also improve the overall utilization of parking facilities to ease the traffic congestion caused by vehicles parked patrol.
基金Project(51561135003)supported by the International Cooperation and Exchange of the National Natural Science Foundation of ChinaProject(51338003)supported by the Key Project of National Natural Science Foundation of China
文摘A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform(WT), artificial neural network(ANN) and forecasting strategies based on the changing characteristics of available parking spaces(APS). First, several APS time series were decomposed and reconstituted by the wavelet transform. Then, using an artificial neural network, the following five strategies for multi-step-ahead time series forecasting were used to forecast the reconstructed time series: recursive strategy, direct strategy, multi-input multi-output(MIMO) strategy, DIRMO strategy(a combination of the direct and MIMO strategies), and newly proposed recursive multi-input multi-output(RECMO) strategy which is a combination of the recursive and MIMO strategies. Finally, integrating the predicted results with the reconstructed time series produced the final forecasted available parking spaces. Three findings appear to be consistently supported by the experimental results. First, applying the wavelet transform to multi-step ahead available parking spaces forecasting can effectively improve the forecasting accuracy. Second, the forecasting resulted from the DIRMO and RECMO strategies is more accurate than that of the other strategies. Finally, the RECMO strategy requires less model training time than the DIRMO strategy and consumes the least amount of training time among five forecasting strategies.
文摘This paper aims to present an intelligent system for parking space detection based on image processing technique. The proposed system captures and processes the rounded image drawn at parking lot and produces the information of the empty car parking spaces. In this work, a camera is used as a sensor to take photos to show the occupancy of car parks. The reason why a camera is used is because with an image it can detect the presence of many cars at once. Also, the camera can be easily moved to detect different car parking lots. By having this image, the particular car parks vacant can be known and then the processed information was used to guide a driver to an available car park rather than wasting time to find one. The proposed system has been developed in both software and hardware platform. An automatic parking system is used to make the whole process of parking cars more efficient and less complex for both drivers and administrators.
文摘To explore the parking pricing of multiple parking facilities, this paper proposes a bi-level programming model, in which the interactions between parking operators and travelers are explicitly considered. The upper-level sub-model simulates the price decision-making behaviors of the parking operators whose objectives may vary under different operation regimes, such as monopoly market, oligopoly competition, and social optimum. The lower level represents a network equilibrium model that simulates how travelers choose modes, routes, and parking facilities. The proposed model is solved by a sensitivity based algorithm, and applied to a numerical experiment, in which three types of parking facilities are studied, i.e., the off-road parking lot, the curb parking lot, and the parking-and-ride (P&R) facility. The results show in oligopoly market that the level of parking price reaches the lowest point, nonetheless the social welfare decreases to the lowest simultaneously;and the share of P&R mode goes to the highest value, however the total network costs rise also to the highest. While the monopoly market and the social optimum regimes result in solutions of which P&R facilities suffer negative profits and have to be subsidized.
基金National High Technology Research and Development Plan Project,China(No.2014BAG03B03)National Natural Science Fundation,China(No.51378171)
文摘Aiming at solving pressing parking issues in the urban environment, a residential parking spaces sharing model was proposed in this study. In this model, firstly, the residential community pattern, the status of idle parking spaces, and the temporal and spatial characteristics of sharing parking had been analyzed. Next,in the convenience of modeling,medical institutions that have the most prominent parking problems were selected as the subject of study. Based on the K-S statistical analysis results and the actual parking sharing situation,it was observed that the residential parking sharing time satisfied the shifted negative exponential distribution( SNED). Finally,a probability model of shared service capacity based on the SNED and critical time condition was established. By applying the statistical analysis method,the time of vehicles passing in and out of parking spaces, the idle time of parking spaces, the shifted distribution parameters, and other important model parameters had been calibrated,which was leading to the algorithm of model. In addition,considering the feasibility of model without sufficient data,the vehicle travel probability,the stagnation rate of parking space,and the status of parking spaces were defined and the reference data were also provided. The results of case studies indicate that it is very promising to solve urban parking issues if the residential community shares its rich parking resources with adjacent commercial buildings.