In order to facilitate spare parts management,an integrated approach of BP neural network and supportability analysis(SA)was proposed to evaluate the criticality of spare parts as well as to prioritize spare parts.Inf...In order to facilitate spare parts management,an integrated approach of BP neural network and supportability analysis(SA)was proposed to evaluate the criticality of spare parts as well as to prioritize spare parts.Influential factors of prioritizing spare parts were detailedly analyzed.Framework of the integrated method was established.The modelling process based on BP neural network was presented.As the input of the neural network,the values of influential factors were determined by supportability analysis data.Based on the presented method,spare parts could be automatically prioritized after supportability analysis for a new system.A case study results showed that the new method was applicable and effective.展开更多
This paper proposed a new approach of sample part classification and design, a so called Or-dered-object-oriented method (O-O-O method). Based on the theory of neural networks, fuzzy clustering algorithm and adaptive ...This paper proposed a new approach of sample part classification and design, a so called Or-dered-object-oriented method (O-O-O method). Based on the theory of neural networks, fuzzy clustering algorithm and adaptive pattern recognition, O-O-O method can be used to classify and design the sample parts automatically. The basic theory, the main step as well as the characteristics of the method are analysed. The construction of the ordered object in application is also presented in this paper.展开更多
This paper deals with part sequencing and optimal robot moves sequence in 2-machine robotic cells according to Petri net graph. We have assumed that the robotic cell is capable of producing same and different parts. W...This paper deals with part sequencing and optimal robot moves sequence in 2-machine robotic cells according to Petri net graph. We have assumed that the robotic cell is capable of producing same and different parts. We have considered a new motion cycle for robot moves sequence which is the development of existing motion cycles in 2-machine robotic cells. The main goal of this study is to minimize the cycle time by determining the optimal part sequencing and robot moves sequence in the robotic cell. So, we have proposed a model based on Petri network.展开更多
A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and i...A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and it is different from normal adaptive neural network controller in structure. Owing to the introduction of the self-learning part, on-line learning can be performed without sample data in several sample periods, resulting in high learning speed of the controller and good control performance. The desired-state programmer is utilized to obtain better learning samples of the neural network to keep the stability of the controller. The developed controller is applied to the 4-degree of freedom control of the AUV “IUV- IV” and is successful on the simulation platform. The control performance is also compared with that of neural network controller with different structures such as normal adaptive neural network and different learning methods. Current effects and surge velocity control are also included to demonstrate the controller' s performance. It is shown that the PNNC has a great possibility to solve the problems in the control system design of underwater vehicles.展开更多
文摘In order to facilitate spare parts management,an integrated approach of BP neural network and supportability analysis(SA)was proposed to evaluate the criticality of spare parts as well as to prioritize spare parts.Influential factors of prioritizing spare parts were detailedly analyzed.Framework of the integrated method was established.The modelling process based on BP neural network was presented.As the input of the neural network,the values of influential factors were determined by supportability analysis data.Based on the presented method,spare parts could be automatically prioritized after supportability analysis for a new system.A case study results showed that the new method was applicable and effective.
文摘This paper proposed a new approach of sample part classification and design, a so called Or-dered-object-oriented method (O-O-O method). Based on the theory of neural networks, fuzzy clustering algorithm and adaptive pattern recognition, O-O-O method can be used to classify and design the sample parts automatically. The basic theory, the main step as well as the characteristics of the method are analysed. The construction of the ordered object in application is also presented in this paper.
文摘This paper deals with part sequencing and optimal robot moves sequence in 2-machine robotic cells according to Petri net graph. We have assumed that the robotic cell is capable of producing same and different parts. We have considered a new motion cycle for robot moves sequence which is the development of existing motion cycles in 2-machine robotic cells. The main goal of this study is to minimize the cycle time by determining the optimal part sequencing and robot moves sequence in the robotic cell. So, we have proposed a model based on Petri network.
文摘A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and it is different from normal adaptive neural network controller in structure. Owing to the introduction of the self-learning part, on-line learning can be performed without sample data in several sample periods, resulting in high learning speed of the controller and good control performance. The desired-state programmer is utilized to obtain better learning samples of the neural network to keep the stability of the controller. The developed controller is applied to the 4-degree of freedom control of the AUV “IUV- IV” and is successful on the simulation platform. The control performance is also compared with that of neural network controller with different structures such as normal adaptive neural network and different learning methods. Current effects and surge velocity control are also included to demonstrate the controller' s performance. It is shown that the PNNC has a great possibility to solve the problems in the control system design of underwater vehicles.