Air temperature is an important indicator to analyze climate change in mountainous areas.ERA5 reanalysis air temperature data are important products that were widely used to analyze temperature change in mountainous a...Air temperature is an important indicator to analyze climate change in mountainous areas.ERA5 reanalysis air temperature data are important products that were widely used to analyze temperature change in mountainous areas.However,the reliability of ERA5 reanalysis air temperature over the Qilian Mountains(QLM)is unclear.In this study,we evaluated the reliability of ERA5 monthly averaged reanalysis 2 m air temperature data using the observations at 17 meteorological stations in the QLM from 1979 to 2017.The results showed that:ERA5 reanalysis monthly averaged air temperature data have a good applicability in the QLM in general(R2=0.99).ERA5 reanalysis temperature data overestimated the observed temperature in the QLM in general.Root mean square error(RMSE)increases with the increasing of elevation range,showing that the reliability of ERA5 reanalysis temperature data is worse in higher elevation than that in lower altitude.ERA5 reanalysis temperature can capture observational warming rates well.All the smallest warming rates of observational temperature and ERA5 reanalysis temperature are found in winter,with the warming rates of 0.393°C/10a and 0.360°C/10a,respectively.This study will provide a reference for the application of ERA5 reanalysis monthly averaged air temperature data at different elevation ranges in the Qilian Mountains.展开更多
Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the ...Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the eastern part of the Wuling Mountains, south bank of the Three Gorges of Yangtze River in Hubei. A total of 29 297 rat clamps/times were placed and 2271 small mammals such as rodents were captured, and 26 small mammals were captured by other means. All the small mammals captured belonged to 8 families 19 genera and 24 species, of which rodentia accounted for 70.83% and insectivora 29.17%. Through analysis of the data, the results showed that: 1 ) although the species richness had a trend of increasing along different sample plots as altitude increased from south to north, quite a few species showed a wide habitat range in a vertical distribution ( 15 species were dispersed over three zones and two species over two zones) , indicating a strong adaptability of small mammals such as rOdents at lower altitudes in most areas and comparatively less vertical span of entire mountains; 2) whether in seven different sample plots or six different ecological types, Apodemus agrarius and Rattus norvegicus were dominant species below 1200m, and Anourosorex squamipes, Niviventer confucianus and Apodemus draco were dominant above altitudes of 1300m, however, in quantity they were short of identical regularity, meaning they did not increase as the altitude did, or decrease as the ecological areas changed; 3)the density in winter was obviously greater than that in spring, and the distribution showed an increasing trend along with altitude, but the density in different sample plots was short of identical regularity, showing changes in different seasons and altitude grades had an important impact on small mammals such as rodents; 4) in species diversity and evenness index, there were obvious changes between the seven different sample plots, probably caused by frequent human interference in this area. Comparatively speaking, there was less human interference at high altitudes where vegetation was rich and had a high diversity and evenness index, and the boundary effect and community stability were obvious. Most ecological types have been seriously interfered with due to excessive assart at low altitudes with singular vegetation and low diversity and evenness index and poor community stability, showing an ecosystem with poor anti-reversion. If human interference can be reduced in those communities at high altitudes with low diversity and evenness index, the biological diversity in the communities will gradually recover to similar levels of other ecological areas.展开更多
Tree-ring chronologies were developed for Sabina saltuaria and Abies faxoniana in mixed forests in the Qionglai Mountains of the eastern Tibetan Plateau.Climate-growth relationship analysis indicated that the two co-e...Tree-ring chronologies were developed for Sabina saltuaria and Abies faxoniana in mixed forests in the Qionglai Mountains of the eastern Tibetan Plateau.Climate-growth relationship analysis indicated that the two co-exist-ing species reponded similarly to climate factors,although S.saltuaria was more sensitive than A.faxoniana.The strong-est correlation was between S.saltuaria chronology and regional mean temperatures from June to November.Based on this relationship,a regional mean temperature from June to November for the period 1605-2016 was constructed.Reconstruction explained 37.3%of the temperature variance during th period 1961-2016.Six major warm periods and five major cold periods were identified.Spectral analysis detected significant interannual and multi-decadal cycles.Reconstruction also revealed the influence of the Atlantic Multi-decadal Oscillation,confirming its importance on climate change on the eastern Tibetan Plateau.展开更多
The Gaoligong Mountains(GLGM),located in southwestern China,extend north to south along the western border of the Hengduan Mountains,spanning approximately 600 km.In this study,we consolidated findings from 17 bird su...The Gaoligong Mountains(GLGM),located in southwestern China,extend north to south along the western border of the Hengduan Mountains,spanning approximately 600 km.In this study,we consolidated findings from 17 bird surveys conducted in the GLGM between 2010 and 2022.We found that the GLGM harbors tremendous bird diversity,with a total of 796 documented bird species in the region.Nearly a quarter(23.0%)of these species are listed as state key protected species or as Chinese and global threatened species.Analysis of species richness at the county level showed a decreasing trend with increasing latitude,with the greatest diversity in Yingjiang(661 species).Observations indicated that the GLGM belongs to the Oriental realm,primarily composed of bird species from southern and southwestern China.The GLGM plays an important role in avian conservation by sheltering exceptional bird diversity,providing corridors and flyways for bird migration and dispersal,and mitigating the effects of climate change.In response to the conservation needs of birds and other wildlife,the Chinese government has established numerous protected areas within the GLGM.Despite these efforts,avian conservation still faces considerable challenges in the GLGM due to limitations in the protected area network,transboundary nature of the regions,and existing gaps in monitoring and research.展开更多
Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Q...Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Qing-hai spruce(Picea crassifolia),a widely distributed native conifer in northwestern China in different environments,we developed chronologies for tree-ring widths and δ^(13)C in trees on the southern and northern slopes of the Qilian Mountains,and analysed the relationship between these tree-ring variables and major climatic factors.Tree-ring widths were strongly influenced by climatic factors early in the growing season,and the radial growth in trees on the northern slopes was more sensitive to climate than in trees on the southern.Tree-ring δ^(13)C was more sensitive to climate than radial growth.δ^(13)C fractionation was mainly influenced by summer temperature and precipitation early in the growing season.Stomatal conductance more strongly limited stable carbon isotope fractionation in tree rings than photosynthetic rate did.The response between tree rings and climate in mountains gradually weakened as climate warmed.Changes in radial growth and stable carbon isotope fractionation of P.crassifolia in response to climate in the Qilian Mountains may be further complicated by continued climate change.展开更多
This study presents a methodology for assessment of the condition of hiking trails(HTs) and their impact zones in the central part of the Low Tatra mountain range, based on comparison of two complex data sets gathered...This study presents a methodology for assessment of the condition of hiking trails(HTs) and their impact zones in the central part of the Low Tatra mountain range, based on comparison of two complex data sets gathered in 33 years apart. The first field investigation was performed in 1980 and 1981, and the second in 2013 and 2014. The main goal was to perform a landscape typology in order to assess the susceptibility of landscape complexes to occurrence of anthropogenic and natural destruction processes and to assess the condition and prospects of HTs and their impacts on the adjacent alpine environment. Landscape complexes were characterised by selected abiotic, biotic and technical parameters of HTs and their impact zones. Due to the high variability of these parameters over the length of the HTs, we had to decide on how to map them. This was done using a square grid with 100 m-sized cells. For each cell with HT, the parameters were assigned the typical value within that cell. In total, 26.3 km of HT were studied, stretching over 266 grid cells. On comparison of the two data sets, it was seen that, 64%(171 grid cells) display a generally positive condition, with 54%(143 grid cells) even exhibiting significant improvement or continuously positive state of their condition. 36%(95 grid cells) were in bad condition, including 3%(9 grid cells) whose state had deteriorated, and 2%(6 grid cells) whose state had significantly deteriorated, in the time between the two assessments.展开更多
The Gongwang Mountains is situated in the northeast part of Yunnan Plovince. In the mountain, glaciation once occirred above 3100 m a. s. l. in the Quaiernary. The typical glacial remains are mainly concentrated in Ji...The Gongwang Mountains is situated in the northeast part of Yunnan Plovince. In the mountain, glaciation once occirred above 3100 m a. s. l. in the Quaiernary. The typical glacial remains are mainly concentrated in Jiaozishan - and Yaojingtang - Niudongping area. The glacial landforms were mainly cirque, trough valley and lateral moraine. Glacial type was alpine cirque glacier and according to morphogenetic relation of the glacial landforms, the Quaternary glaciation should be separated into two periods: last glaciation (containing two stages of late and maximum glaciation) and penultimate in the Gongwang Mountain in northeast part of Yunnan Province of China.展开更多
Mountains are unique terrestrial ecosystems characterized by distinct physiography,biological diversity,and socio-economic features.These ecosystems provide numerous essential goods and services to communities within ...Mountains are unique terrestrial ecosystems characterized by distinct physiography,biological diversity,and socio-economic features.These ecosystems provide numerous essential goods and services to communities within and beyond the mountains.Despite their significance,comprehensive studies that thoroughly characterize the ecosystem services of mountains are lacking.Such research is crucial to advance scientific understanding of mountain characteristics and ecosystem services.This study investigates mountain regions’unique characteristics and ecosystem services using global datasets such as the U.S.Geological Survey(USGS),the Global Mountain Biodiversity Assessment(GMBA),NASA EARTHDATA,and other relevant databases and literature review.The focus was to explore unique physiographic and socio-economic characteristics and ecosystem services provided by mountains.The results indicate that mountain ecosystems are pivotal in offering provisional,regulatory,and supporting ecosystem services on Earth.Despite their limited geographical area,these ecosystems supply substantial amounts of freshwater to communities living within and downstream of mountainous regions.Additionally,mountain ecosystems serve as global biodiversity hotspots,harboring a significant proportion of the world's species.However,mountain ecosystems face numerous natural and anthropogenic challenges,including climate change,habitat destruction,and resource overexploitation.Current efforts towards sustainable mountain development are inadequate.Enhanced scientific research and targeted policy measures are essential to address these challenges,protect mountain biodiversity,and ensure the continuous provision of vital ecosystem services.展开更多
As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is c...As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June-August)maximum temperature(T_(max6-8))variations from 1718 to 2017.The reconstruction explained 53.1% of the variance in the observed T_(max6-8).Over the past 300 years,the T_(max6-8)reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The T_(max6-8) variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.展开更多
As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is con...As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Mountains was used to reconstruct the summer(June-August)maximum temperature(Tmax6-8) variations from 1718 to2017.The reconstruction explained 53.1% of the variance in the observed Tmax6-8.Over the past 300 years,the Tmax6-8reconstruction showed clear interannual and decadal variabilities.There was a significant warming trend(0.18 ℃/decade) after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The Tmax6-8variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the summer North Atlantic Oscillation.This study reveals that climate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mechanisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.展开更多
The Alborz Mountains are some of the highest in Iran,and they play an important role in controlling the climate of the country’s northern regions.The land surface temperature(LST)is an important variable that affects...The Alborz Mountains are some of the highest in Iran,and they play an important role in controlling the climate of the country’s northern regions.The land surface temperature(LST)is an important variable that affects the ecosystem of this area.This study investigated the spatiotemporal changes and trends of the nighttime LST in the western region of the Central Alborz Mountains at elevations of 1500-4000 m above sea level.MODIS data were extracted for the period of 2000-2021,and the Mann-Kendall nonparametric test was applied to evaluating the changes in the LST.The results indicated a significant increasing trend for the monthly average LST in May-August along the southern aspect.Both the northern and southern aspects showed decreasing trends for the monthly average LST in October,November,and March and an increasing trend in other months.At all elevations,the average decadal change in the monthly average LST was more severe along the southern aspect(0.60°C)than along the northern aspect(0.37°C).The LST difference between the northern and southern aspects decreased in the cold months but increased in the hot months.At the same elevation,the difference in the lapse rate between the northern and southern aspects was greater in the hot months than in the cold months.With increasing elevation,the lapse rate between the northern and southern aspects disappeared.Climate change was concluded to greatly decrease the difference in LST at different elevations for April-July.展开更多
Understanding the spatial heterogeneity of debris-flow-prone areas holds significant implications for regional risk management, particularly in seismically active regions with geological faults. Despite the significan...Understanding the spatial heterogeneity of debris-flow-prone areas holds significant implications for regional risk management, particularly in seismically active regions with geological faults. Despite the significance of this knowledge, a comprehensive quantification of the influence of regional topographical and geological factors on the spatial heterogeneity of debris-flow-prone areas has been lacking. This study selected the Hengduan Mountains, an earthquake-prone region characterized by diverse surface conditions and complex landforms, as a representative study area. An improved units zoning and objective factors identification methodology was employed in earthquake and fault analysis to assess the impact of seismic activity and geological factors on spatial heterogeneity of debrisflow prone areas. Results showed that the application of GIS technology with hydrodynamic intensity and geographical units analysis can effectively analyze debris-flow prone areas. Meanwhile, earthquake and fault zones obviously increase the density of debrisflow prone catchments and make them unevenly distributed. The number of debris-flow prone areas shows a nonlinear variation with the gradual increase of geomorphic factor value. Specifically, the area with 1000 m-2500 m elevation difference, 25°-30° average slope, and 0.13-0.15 land use index is the most favorable conditions for debris-flow occurrence;The average annual rainfall from 600 to 1150 mm and landslides gradient from 16° to 35° are the main causal factors to trigger debris flow. Our study sheds light on the quantification of spatial heterogeneity in debris flow-prone areas in earthquake-prone regions, which can offer crucial support for post-debris flow risk management strategies.展开更多
The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problem...The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problems,and effective artificial restoration measures have been used to restore grasslands in the Shimenhe mining areas to different degrees.In this study,we investigated,examined and analyzed plant community structure and its correlation with soil properties across varying degrees of alpine grassland restoration in Qilian Mountains Shimenhe restoration mines using the sample method,and studied the changes in species diversity using five diversity indexes(Simpson index,Shannon index,Margalef index,Dominance index and Evenness index).This study showed that the plant community characteristics with high recovered degree(HRD)> middle recovered degree(MRD)> low recovered degree(LRD)> very low recovered degree(VLRD),11 plant genera comprising 11 species across 10 families were identified.Dominant families with robust ecological adaptability included Leguminosae,Rosaceae,Gramineae,Asteraceae,and Salicaceae.The highest Simpson,Shannon,Margalef and Evenness index of HRD grassland community species were 0.82,1.96,1.66 and 0.89,respectively.The highest Dominance index of VLRD grassland community species was 0.34,which required several restoration methods such as spraying and mulching.Soil pH and EC tended to decrease with increasing restoration,SOC,SMC,TP,AP,NH4-N,TN,AN and NO3-N tended to increase and the content of soil environmental factors contributed to vegetation growth across various restoration levels the mine grassland.In conclusion,our study indicated that the community structure gradually diversified and soil properties changed positively with the increase of restoration degrees in the Qilian Mountains Shimenhe mine,and the best results of HRD restoration were obtained.This study provides the theoretical basis for the restoration and conservation of grasslands in mining areas by demonstrating examined the correlation between plant characteristics and soil properties in restored grasslands in alpine mining areas.展开更多
To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfa...To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfanghong For-est that varied in thinning intensity:plot A(10%),B(15%),C(20%),D(25%),E(30%),F(35%),and the control sample area(0%).A principal component analysis was performed using 50 different variables,including species diversity,soil fertility,litter characteristics,canopy structure param-eters,and seedling regeneration parameters.The effects of thinning intensity on carbon sequestration were strongest in plot E(0.75),followed by D(0.63),F(0.50),C(0.48),B(0.22),A(0.11),and the control(0.06).The composite score of plot E was the highest,indicating that the carbon sequestration effect was strongest at a thinning intensity of 30%.These findings provide useful insights that could aid the management of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains,China.This information has implications for future studies of these forests,and the methods used could aid future ecological assessments of the natural forests in Xiaoxing’an Mountains,China.展开更多
Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This stud...Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research.展开更多
The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), ha...The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), has decreased dramatically in the past decades due to climate change and human activity, which may have influenced its ecological functions. To restore its ecological functions, reasonable reforestation is the key measure. Many previous efforts have predicted the potential distribution of Picea crassifolia, which provides guidance on regional reforestation policy. However, all of them were performed at low spatial resolution, thus ignoring the natural characteristics of the patchy distribution of Picea crassifolia. Here, we modeled the distribution of Picea crassifolia with species distribution models at high spatial resolutions. For many models, the area under the receiver operating characteristic curve (AUC) is larger than 0.9, suggesting their excellent precision. The AUC of models at 30 m is higher than that of models at 90 m, and the current potential distribution of Picea crassifolia is more closely aligned with its actual distribution at 30 m, demonstrating that finer data resolution improves model performance. Besides, for models at 90 m resolution, annual precipitation (Bio12) played the paramount influence on the distribution of Picea crassifolia, while the aspect became the most important one at 30 m, indicating the crucial role of finer topographic data in modeling species with patchy distribution. The current distribution of Picea crassifolia was concentrated in the northern and central parts of the study area, and this pattern will be maintained under future scenarios, although some habitat loss in the central parts and gain in the eastern regions is expected owing to increasing temperatures and precipitation. Our findings can guide protective and restoration strategies for the Qilian Mountains, which would benefit regional ecological balance.展开更多
The existing approaches for the design of tourist areas often lead to limited flexibility in project implementation.To realize a more flexible approach,in this study,we formulated a model for planning and designing to...The existing approaches for the design of tourist areas often lead to limited flexibility in project implementation.To realize a more flexible approach,in this study,we formulated a model for planning and designing tourist areas at the local level.Moreover,specific tools for analyzing tourist areas and ensuring sustainable development under changing conditions were developed.This study was conducted in two tourist regions,Biryuzovaya Katun tourist complex and Belokurikha destination(including Belokurikha City with Belokurikha 2 Gornaya tourist complex and surrounding areas),in the Altay Mountains.We employed the recreation opportunity spectrum and proposed a system-integrated programming approach for the design of tourist areas at the destination and site levels.The key of this approach was the collection and analysis of current spatial data,including the spatial distribution of attractions and visitor flows.We constructed heat maps using video recording and unmanned aerial vehicle(UAV)observation data.Moreover,we analyzed the video stream using an image-analyzing framework You Only Look Once(YOLO)v5 software.The heat map of visitor flows based on video recording data in the Andreevskaya Sloboda museum of Belokurikha 2 Gornaya tourist complex allowed us to highlight the most attractive sites in this area and classify them into one of three types:points of functional concentration,points of transitional concentration,and points of attractions.The heat maps in Biryuzovaya Katun tourist complex,created using UAV observation data,allowed us to determine the spatiotemporal patterns of visitor flows and tourists’preferences throughout the day within four time intervals:09:00-12:00,13:00-14:00,14:00-15:00,and 16:00-18:00(LST).The maximum visitor flow density occurred from 16:00 to 18:00 in the beach area of the artificial lake.A comparison between the visitor-concentrated sites and the current facilities provided insights into the demand for attractions and facilities and the lacking areas.Heat maps are useful in analyzing the land use at the site level,while zoning based on the recreation opportunity spectrum can be used to design tourist areas at the destination level.The proposed methods for analyzing the use of tourist areas contribute to the development of adaptive tourism design.展开更多
Liupan Mountains are situated in the south of Ningxia Hui Autonomous Region and east of Gansu Province.This area is rich in forests and vegetation.After field investigation,literature review and specimen identificatio...Liupan Mountains are situated in the south of Ningxia Hui Autonomous Region and east of Gansu Province.This area is rich in forests and vegetation.After field investigation,literature review and specimen identification,the plant resources and diversity of Liupan Mountains were studied by the 4th Shenyang Pharmaceutical University Chinese Medicine Resources Scientific Expedition Team.There were 161 species of vascular plants belonging to 60 families and 119 genera collected from July to August 2010 in this area.Among them,the dominant families are Campanulaceae,Ranunculaceae,Orobanchaceae,Asparagaceae,Fabaceae,Rosaceae and Asteraceae,with 6,7,8,8,10,10,and 22 species,respectively.Although representing only 11.7%of the total number of families,these families had a species occupancy rate of over 44.1%.At the genus level,Pedicularis is the most dominant genus with 6 species,while 92 genera contain only 1 species,accounting for 77.3%of the total number of genera.In a word,our research has updated the plant resources and diversity in Liupan Mountains.Furthermore,by providing practical and meaningful suggestions for strengthening the protection and utilization of plant resources in Liupan Mountains,our research is of great significance for maintaining the diverse ecosystem in this area.展开更多
Taihang Mountains are situated between Shanxi Province and the North China Plain,spanning Beijing,Hebei,Shanxi,and Henan provinces and cities.The mountains extend from northeast to southwest for over 400 km,naturally ...Taihang Mountains are situated between Shanxi Province and the North China Plain,spanning Beijing,Hebei,Shanxi,and Henan provinces and cities.The mountains extend from northeast to southwest for over 400 km,naturally deviding the second step from the third one in China.The southeastern area of Taihang Mountains specifically refers to Changzhi City and Jincheng Administrative Region of Shanxi Province.Given Shanxi Province’s robust development plans for the southeast area of Taihang Mountains,the medicinal plant resources in this area will be affected.Therefore,it is imperative and urgent to conduct a comprehensive investigation and study on the medicinal plant resources in the southeast area of Taihang Mountains.By means of field investigation,literature review,and specimen identification,the plant resources and diversity of two counties in the southeast of Taihang Mountains were evaluated.The findings revealed 234 plants species across 172 genera in 70 families,primarily comprising angiosperms.The families with more species included Compositae,Leguminosae,Rosaceae,Labiatae,Ranunculaceae.Among the genera,those with more species were Cynanchum,Selaginella,Clematis,Thalictrum,and Rhamnus.A total of 114 medicinal plants were identified,constituting 48.72%of the total.Regarding medicinal parts,the concentration is in roots and rhizomes,followed by whole plants and fruits.On the basis of investigation and study,some suggestions on the development,utilization,and protection of medicinal plant resources in southeast Taihang Mountains were made.These suggestions provide valuable insights for the study on medicinal plant resources and vegetation in the southeast of Taihang Mountains,serving as a scientific basis for the protection and sustainable utilization of wild medicinal plant resources.展开更多
Characterization of the spatial and temporal variability of stable isotopes in surface water is essential for interpreting hydrological processes.In this study,we collected the water samples of river water,groundwater...Characterization of the spatial and temporal variability of stable isotopes in surface water is essential for interpreting hydrological processes.In this study,we collected the water samples of river water,groundwater,and reservoir water in the Burqin River Basin of the Altay Mountains,China in 2021,and characterized the oxygen and hydrogen isotope variations in different water bodies via instrumental analytics and modeling.Results showed significant seasonal variations in stable isotope ratios of oxygen and hydrogen(δ18O andδ2H,respectively)and significant differences inδ18O andδ2H among different water bodies.Higherδ18O andδ2H values were mainly found in river water,while groundwater and reservoir water had lower isotope ratios.River water and groundwater showed differentδ18O-δ2H relationships with the local meteoric water line,implying that river water and groundwater are controlled by evaporative enrichment and multi-source recharge processes.The evaporative enrichment experienced by reservoir water was less significant and largely influenced by topography,recharge sources,local moisture cycling,and anthropogenic factors.Higher deuterium excess(d-excess)value of 14.34‰for river water probably represented the isotopic signature of combined contributions from direct precipitation,snow and glacial meltwater,and groundwater recharge.The average annual d-excess values of groundwater(10.60‰)and reservoir water(11.49‰)were similar to the value of global precipitation(10.00‰).The findings contribute to understanding the hydroclimatic information reflected in the month-by-month variations in stable isotopes in different water bodies and provide a reference for the study of hydrological processes and climate change in the Altay Mountains,China.展开更多
基金financially supported by the National Natural Science Foundation of China(No.41621001)。
文摘Air temperature is an important indicator to analyze climate change in mountainous areas.ERA5 reanalysis air temperature data are important products that were widely used to analyze temperature change in mountainous areas.However,the reliability of ERA5 reanalysis air temperature over the Qilian Mountains(QLM)is unclear.In this study,we evaluated the reliability of ERA5 monthly averaged reanalysis 2 m air temperature data using the observations at 17 meteorological stations in the QLM from 1979 to 2017.The results showed that:ERA5 reanalysis monthly averaged air temperature data have a good applicability in the QLM in general(R2=0.99).ERA5 reanalysis temperature data overestimated the observed temperature in the QLM in general.Root mean square error(RMSE)increases with the increasing of elevation range,showing that the reliability of ERA5 reanalysis temperature data is worse in higher elevation than that in lower altitude.ERA5 reanalysis temperature can capture observational warming rates well.All the smallest warming rates of observational temperature and ERA5 reanalysis temperature are found in winter,with the warming rates of 0.393°C/10a and 0.360°C/10a,respectively.This study will provide a reference for the application of ERA5 reanalysis monthly averaged air temperature data at different elevation ranges in the Qilian Mountains.
基金National Natural Science Foundation of China(30070679)the Natural Science Foundation of Hubei Province(2004ABA138)+1 种基金the Key Technology R&D Programme Foundation of Hubei Province(2002AA301C43)the Hubei Health Bureau Research Programme Foundation(NX200427)
文摘Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the eastern part of the Wuling Mountains, south bank of the Three Gorges of Yangtze River in Hubei. A total of 29 297 rat clamps/times were placed and 2271 small mammals such as rodents were captured, and 26 small mammals were captured by other means. All the small mammals captured belonged to 8 families 19 genera and 24 species, of which rodentia accounted for 70.83% and insectivora 29.17%. Through analysis of the data, the results showed that: 1 ) although the species richness had a trend of increasing along different sample plots as altitude increased from south to north, quite a few species showed a wide habitat range in a vertical distribution ( 15 species were dispersed over three zones and two species over two zones) , indicating a strong adaptability of small mammals such as rOdents at lower altitudes in most areas and comparatively less vertical span of entire mountains; 2) whether in seven different sample plots or six different ecological types, Apodemus agrarius and Rattus norvegicus were dominant species below 1200m, and Anourosorex squamipes, Niviventer confucianus and Apodemus draco were dominant above altitudes of 1300m, however, in quantity they were short of identical regularity, meaning they did not increase as the altitude did, or decrease as the ecological areas changed; 3)the density in winter was obviously greater than that in spring, and the distribution showed an increasing trend along with altitude, but the density in different sample plots was short of identical regularity, showing changes in different seasons and altitude grades had an important impact on small mammals such as rodents; 4) in species diversity and evenness index, there were obvious changes between the seven different sample plots, probably caused by frequent human interference in this area. Comparatively speaking, there was less human interference at high altitudes where vegetation was rich and had a high diversity and evenness index, and the boundary effect and community stability were obvious. Most ecological types have been seriously interfered with due to excessive assart at low altitudes with singular vegetation and low diversity and evenness index and poor community stability, showing an ecosystem with poor anti-reversion. If human interference can be reduced in those communities at high altitudes with low diversity and evenness index, the biological diversity in the communities will gradually recover to similar levels of other ecological areas.
基金This study was supported by the National Key Research and Development Program of China(No.2018YFA0605601)Hong Kong Research Grants Council(No.106220169)+1 种基金the National Natural Science Foundation of China(Nos.41671042,42077417,42105155,and 42201083)the National Geographic Society(No.EC-95776R-22).
文摘Tree-ring chronologies were developed for Sabina saltuaria and Abies faxoniana in mixed forests in the Qionglai Mountains of the eastern Tibetan Plateau.Climate-growth relationship analysis indicated that the two co-exist-ing species reponded similarly to climate factors,although S.saltuaria was more sensitive than A.faxoniana.The strong-est correlation was between S.saltuaria chronology and regional mean temperatures from June to November.Based on this relationship,a regional mean temperature from June to November for the period 1605-2016 was constructed.Reconstruction explained 37.3%of the temperature variance during th period 1961-2016.Six major warm periods and five major cold periods were identified.Spectral analysis detected significant interannual and multi-decadal cycles.Reconstruction also revealed the influence of the Atlantic Multi-decadal Oscillation,confirming its importance on climate change on the eastern Tibetan Plateau.
基金supported by the National Key R&D Program of China(2022YFC2602500,2022YFC2602502)Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment,China,Second Xizang Plateau Scientific Expedition and Research Program(STEP,2019QZKK0501)+3 种基金Major Science and Technique Programs in Yunnan Province(202102AA310055)National Natural Science Foundation of China(32070435)Science and Technology Basic Resources Investigation Program of China“Wild germplasm collection and preservation in Great Gaoligong Mountain”(2021FY100200)Project for Talent and Platform of Science and Technology in Yunnan Province Science and Technology Department(202205AM070007)。
文摘The Gaoligong Mountains(GLGM),located in southwestern China,extend north to south along the western border of the Hengduan Mountains,spanning approximately 600 km.In this study,we consolidated findings from 17 bird surveys conducted in the GLGM between 2010 and 2022.We found that the GLGM harbors tremendous bird diversity,with a total of 796 documented bird species in the region.Nearly a quarter(23.0%)of these species are listed as state key protected species or as Chinese and global threatened species.Analysis of species richness at the county level showed a decreasing trend with increasing latitude,with the greatest diversity in Yingjiang(661 species).Observations indicated that the GLGM belongs to the Oriental realm,primarily composed of bird species from southern and southwestern China.The GLGM plays an important role in avian conservation by sheltering exceptional bird diversity,providing corridors and flyways for bird migration and dispersal,and mitigating the effects of climate change.In response to the conservation needs of birds and other wildlife,the Chinese government has established numerous protected areas within the GLGM.Despite these efforts,avian conservation still faces considerable challenges in the GLGM due to limitations in the protected area network,transboundary nature of the regions,and existing gaps in monitoring and research.
基金supported by Basic Research Operating Expenses of the Central level Non-profit Research Institutes (IDM2022003)National Natural Science Foundation of China (42375054)+2 种基金Regional collaborative innovation project of Xinjiang (2021E01022,2022E01045)Young Meteorological Talent Program of China Meteorological Administration,Tianshan Talent Program of Xinjiang (2022TSYCCX0003)Youth Innovation Team of China Meteorological Administration (CMA2023QN08).
文摘Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Qing-hai spruce(Picea crassifolia),a widely distributed native conifer in northwestern China in different environments,we developed chronologies for tree-ring widths and δ^(13)C in trees on the southern and northern slopes of the Qilian Mountains,and analysed the relationship between these tree-ring variables and major climatic factors.Tree-ring widths were strongly influenced by climatic factors early in the growing season,and the radial growth in trees on the northern slopes was more sensitive to climate than in trees on the southern.Tree-ring δ^(13)C was more sensitive to climate than radial growth.δ^(13)C fractionation was mainly influenced by summer temperature and precipitation early in the growing season.Stomatal conductance more strongly limited stable carbon isotope fractionation in tree rings than photosynthetic rate did.The response between tree rings and climate in mountains gradually weakened as climate warmed.Changes in radial growth and stable carbon isotope fractionation of P.crassifolia in response to climate in the Qilian Mountains may be further complicated by continued climate change.
基金part of the project Green Infrastructure of Slovakia(Grant No.2/0066/15)from the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences
文摘This study presents a methodology for assessment of the condition of hiking trails(HTs) and their impact zones in the central part of the Low Tatra mountain range, based on comparison of two complex data sets gathered in 33 years apart. The first field investigation was performed in 1980 and 1981, and the second in 2013 and 2014. The main goal was to perform a landscape typology in order to assess the susceptibility of landscape complexes to occurrence of anthropogenic and natural destruction processes and to assess the condition and prospects of HTs and their impacts on the adjacent alpine environment. Landscape complexes were characterised by selected abiotic, biotic and technical parameters of HTs and their impact zones. Due to the high variability of these parameters over the length of the HTs, we had to decide on how to map them. This was done using a square grid with 100 m-sized cells. For each cell with HT, the parameters were assigned the typical value within that cell. In total, 26.3 km of HT were studied, stretching over 266 grid cells. On comparison of the two data sets, it was seen that, 64%(171 grid cells) display a generally positive condition, with 54%(143 grid cells) even exhibiting significant improvement or continuously positive state of their condition. 36%(95 grid cells) were in bad condition, including 3%(9 grid cells) whose state had deteriorated, and 2%(6 grid cells) whose state had significantly deteriorated, in the time between the two assessments.
文摘The Gongwang Mountains is situated in the northeast part of Yunnan Plovince. In the mountain, glaciation once occirred above 3100 m a. s. l. in the Quaiernary. The typical glacial remains are mainly concentrated in Jiaozishan - and Yaojingtang - Niudongping area. The glacial landforms were mainly cirque, trough valley and lateral moraine. Glacial type was alpine cirque glacier and according to morphogenetic relation of the glacial landforms, the Quaternary glaciation should be separated into two periods: last glaciation (containing two stages of late and maximum glaciation) and penultimate in the Gongwang Mountain in northeast part of Yunnan Province of China.
文摘Mountains are unique terrestrial ecosystems characterized by distinct physiography,biological diversity,and socio-economic features.These ecosystems provide numerous essential goods and services to communities within and beyond the mountains.Despite their significance,comprehensive studies that thoroughly characterize the ecosystem services of mountains are lacking.Such research is crucial to advance scientific understanding of mountain characteristics and ecosystem services.This study investigates mountain regions’unique characteristics and ecosystem services using global datasets such as the U.S.Geological Survey(USGS),the Global Mountain Biodiversity Assessment(GMBA),NASA EARTHDATA,and other relevant databases and literature review.The focus was to explore unique physiographic and socio-economic characteristics and ecosystem services provided by mountains.The results indicate that mountain ecosystems are pivotal in offering provisional,regulatory,and supporting ecosystem services on Earth.Despite their limited geographical area,these ecosystems supply substantial amounts of freshwater to communities living within and downstream of mountainous regions.Additionally,mountain ecosystems serve as global biodiversity hotspots,harboring a significant proportion of the world's species.However,mountain ecosystems face numerous natural and anthropogenic challenges,including climate change,habitat destruction,and resource overexploitation.Current efforts towards sustainable mountain development are inadequate.Enhanced scientific research and targeted policy measures are essential to address these challenges,protect mountain biodiversity,and ensure the continuous provision of vital ecosystem services.
基金This study was supported by the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0101)the China Desert Meteorological Science Research Foundation(Sqj2022012)+3 种基金the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0307)the National Natural Science Foundation of China(42361144712)the Chinese Academy of Sciences(XDB40010300)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(SKLLQG2022).
文摘As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June-August)maximum temperature(T_(max6-8))variations from 1718 to 2017.The reconstruction explained 53.1% of the variance in the observed T_(max6-8).Over the past 300 years,the T_(max6-8)reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The T_(max6-8) variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0101)the China Desert Meteorological Science Research Foundation(Sqj2022012)+3 种基金the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0307)the National Natural Science Foundation of China(42361144712)the Chinese Academy of Sciences(XDB40010300)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(SKLLQG2022).
文摘As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Mountains was used to reconstruct the summer(June-August)maximum temperature(Tmax6-8) variations from 1718 to2017.The reconstruction explained 53.1% of the variance in the observed Tmax6-8.Over the past 300 years,the Tmax6-8reconstruction showed clear interannual and decadal variabilities.There was a significant warming trend(0.18 ℃/decade) after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The Tmax6-8variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the summer North Atlantic Oscillation.This study reveals that climate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mechanisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.
文摘The Alborz Mountains are some of the highest in Iran,and they play an important role in controlling the climate of the country’s northern regions.The land surface temperature(LST)is an important variable that affects the ecosystem of this area.This study investigated the spatiotemporal changes and trends of the nighttime LST in the western region of the Central Alborz Mountains at elevations of 1500-4000 m above sea level.MODIS data were extracted for the period of 2000-2021,and the Mann-Kendall nonparametric test was applied to evaluating the changes in the LST.The results indicated a significant increasing trend for the monthly average LST in May-August along the southern aspect.Both the northern and southern aspects showed decreasing trends for the monthly average LST in October,November,and March and an increasing trend in other months.At all elevations,the average decadal change in the monthly average LST was more severe along the southern aspect(0.60°C)than along the northern aspect(0.37°C).The LST difference between the northern and southern aspects decreased in the cold months but increased in the hot months.At the same elevation,the difference in the lapse rate between the northern and southern aspects was greater in the hot months than in the cold months.With increasing elevation,the lapse rate between the northern and southern aspects disappeared.Climate change was concluded to greatly decrease the difference in LST at different elevations for April-July.
基金supported by the Hubei Provincial Engineering Research Center of Slope Habitat Construction Technique Using Cement-based Materials Open Research Program (Grant No. 2022SNJ112022SNJ12)+4 种基金National Natural Science Foundation of China (Grant No. 42371014)Hubei Key Laboratory of Disaster Prevention and Mitigation (China Three Gorges University) Open Research Program (Grant No. 2022KJZ122023KJZ19)CRSRI Open Research Program (Grant No. CKWV2021888/KY)the Key Laboratory of Mountain Hazards and Earth Surface Processes, Chinese Academy of Sciences (Grant No. KLMHESP20-0)。
文摘Understanding the spatial heterogeneity of debris-flow-prone areas holds significant implications for regional risk management, particularly in seismically active regions with geological faults. Despite the significance of this knowledge, a comprehensive quantification of the influence of regional topographical and geological factors on the spatial heterogeneity of debris-flow-prone areas has been lacking. This study selected the Hengduan Mountains, an earthquake-prone region characterized by diverse surface conditions and complex landforms, as a representative study area. An improved units zoning and objective factors identification methodology was employed in earthquake and fault analysis to assess the impact of seismic activity and geological factors on spatial heterogeneity of debrisflow prone areas. Results showed that the application of GIS technology with hydrodynamic intensity and geographical units analysis can effectively analyze debris-flow prone areas. Meanwhile, earthquake and fault zones obviously increase the density of debrisflow prone catchments and make them unevenly distributed. The number of debris-flow prone areas shows a nonlinear variation with the gradual increase of geomorphic factor value. Specifically, the area with 1000 m-2500 m elevation difference, 25°-30° average slope, and 0.13-0.15 land use index is the most favorable conditions for debris-flow occurrence;The average annual rainfall from 600 to 1150 mm and landslides gradient from 16° to 35° are the main causal factors to trigger debris flow. Our study sheds light on the quantification of spatial heterogeneity in debris flow-prone areas in earthquake-prone regions, which can offer crucial support for post-debris flow risk management strategies.
基金supported by the National Key R&D Program of China (Nos. 2022YFF1303301, 2022YFF1302603)the National Natural Science Foundation of China (Nos. 52179026, 42001035, 42101115)+5 种基金the Science and Technology Program of Gansu Province (Nos. 22JR5RA072, 22JR5RA068)the Postdoctoral Funding Program of Gansu Province (No. E339880139)the Natural Science Foundation of Gansu Province (No. E331040901)the Science and Technology Fund of Gansu Province (No. 23JRRA640)the Consulting and Research Project of the Gansu Research Institute of Chinese Engineering Science and Technology Development Strategy (No. GS2022ZDI03)the Open Fund of Technology Innovation Center for Mine Geological Environment Restoration in the Alpine and Arid Regions (No. HHGCKK2204)
文摘The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problems,and effective artificial restoration measures have been used to restore grasslands in the Shimenhe mining areas to different degrees.In this study,we investigated,examined and analyzed plant community structure and its correlation with soil properties across varying degrees of alpine grassland restoration in Qilian Mountains Shimenhe restoration mines using the sample method,and studied the changes in species diversity using five diversity indexes(Simpson index,Shannon index,Margalef index,Dominance index and Evenness index).This study showed that the plant community characteristics with high recovered degree(HRD)> middle recovered degree(MRD)> low recovered degree(LRD)> very low recovered degree(VLRD),11 plant genera comprising 11 species across 10 families were identified.Dominant families with robust ecological adaptability included Leguminosae,Rosaceae,Gramineae,Asteraceae,and Salicaceae.The highest Simpson,Shannon,Margalef and Evenness index of HRD grassland community species were 0.82,1.96,1.66 and 0.89,respectively.The highest Dominance index of VLRD grassland community species was 0.34,which required several restoration methods such as spraying and mulching.Soil pH and EC tended to decrease with increasing restoration,SOC,SMC,TP,AP,NH4-N,TN,AN and NO3-N tended to increase and the content of soil environmental factors contributed to vegetation growth across various restoration levels the mine grassland.In conclusion,our study indicated that the community structure gradually diversified and soil properties changed positively with the increase of restoration degrees in the Qilian Mountains Shimenhe mine,and the best results of HRD restoration were obtained.This study provides the theoretical basis for the restoration and conservation of grasslands in mining areas by demonstrating examined the correlation between plant characteristics and soil properties in restored grasslands in alpine mining areas.
基金funded by National Key Research and development project(2022YFD2201001)Project for Applied TechnologyResearch and Development in Heilongjiang Province(GA19C006).
文摘To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfanghong For-est that varied in thinning intensity:plot A(10%),B(15%),C(20%),D(25%),E(30%),F(35%),and the control sample area(0%).A principal component analysis was performed using 50 different variables,including species diversity,soil fertility,litter characteristics,canopy structure param-eters,and seedling regeneration parameters.The effects of thinning intensity on carbon sequestration were strongest in plot E(0.75),followed by D(0.63),F(0.50),C(0.48),B(0.22),A(0.11),and the control(0.06).The composite score of plot E was the highest,indicating that the carbon sequestration effect was strongest at a thinning intensity of 30%.These findings provide useful insights that could aid the management of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains,China.This information has implications for future studies of these forests,and the methods used could aid future ecological assessments of the natural forests in Xiaoxing’an Mountains,China.
基金funded by the National Natural Science Foundation of China(42371022,42030501,41877148).
文摘Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research.
基金supported by the National Natural Science Foundation of China(No.42071057).
文摘The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), has decreased dramatically in the past decades due to climate change and human activity, which may have influenced its ecological functions. To restore its ecological functions, reasonable reforestation is the key measure. Many previous efforts have predicted the potential distribution of Picea crassifolia, which provides guidance on regional reforestation policy. However, all of them were performed at low spatial resolution, thus ignoring the natural characteristics of the patchy distribution of Picea crassifolia. Here, we modeled the distribution of Picea crassifolia with species distribution models at high spatial resolutions. For many models, the area under the receiver operating characteristic curve (AUC) is larger than 0.9, suggesting their excellent precision. The AUC of models at 30 m is higher than that of models at 90 m, and the current potential distribution of Picea crassifolia is more closely aligned with its actual distribution at 30 m, demonstrating that finer data resolution improves model performance. Besides, for models at 90 m resolution, annual precipitation (Bio12) played the paramount influence on the distribution of Picea crassifolia, while the aspect became the most important one at 30 m, indicating the crucial role of finer topographic data in modeling species with patchy distribution. The current distribution of Picea crassifolia was concentrated in the northern and central parts of the study area, and this pattern will be maintained under future scenarios, although some habitat loss in the central parts and gain in the eastern regions is expected owing to increasing temperatures and precipitation. Our findings can guide protective and restoration strategies for the Qilian Mountains, which would benefit regional ecological balance.
文摘The existing approaches for the design of tourist areas often lead to limited flexibility in project implementation.To realize a more flexible approach,in this study,we formulated a model for planning and designing tourist areas at the local level.Moreover,specific tools for analyzing tourist areas and ensuring sustainable development under changing conditions were developed.This study was conducted in two tourist regions,Biryuzovaya Katun tourist complex and Belokurikha destination(including Belokurikha City with Belokurikha 2 Gornaya tourist complex and surrounding areas),in the Altay Mountains.We employed the recreation opportunity spectrum and proposed a system-integrated programming approach for the design of tourist areas at the destination and site levels.The key of this approach was the collection and analysis of current spatial data,including the spatial distribution of attractions and visitor flows.We constructed heat maps using video recording and unmanned aerial vehicle(UAV)observation data.Moreover,we analyzed the video stream using an image-analyzing framework You Only Look Once(YOLO)v5 software.The heat map of visitor flows based on video recording data in the Andreevskaya Sloboda museum of Belokurikha 2 Gornaya tourist complex allowed us to highlight the most attractive sites in this area and classify them into one of three types:points of functional concentration,points of transitional concentration,and points of attractions.The heat maps in Biryuzovaya Katun tourist complex,created using UAV observation data,allowed us to determine the spatiotemporal patterns of visitor flows and tourists’preferences throughout the day within four time intervals:09:00-12:00,13:00-14:00,14:00-15:00,and 16:00-18:00(LST).The maximum visitor flow density occurred from 16:00 to 18:00 in the beach area of the artificial lake.A comparison between the visitor-concentrated sites and the current facilities provided insights into the demand for attractions and facilities and the lacking areas.Heat maps are useful in analyzing the land use at the site level,while zoning based on the recreation opportunity spectrum can be used to design tourist areas at the destination level.The proposed methods for analyzing the use of tourist areas contribute to the development of adaptive tourism design.
文摘Liupan Mountains are situated in the south of Ningxia Hui Autonomous Region and east of Gansu Province.This area is rich in forests and vegetation.After field investigation,literature review and specimen identification,the plant resources and diversity of Liupan Mountains were studied by the 4th Shenyang Pharmaceutical University Chinese Medicine Resources Scientific Expedition Team.There were 161 species of vascular plants belonging to 60 families and 119 genera collected from July to August 2010 in this area.Among them,the dominant families are Campanulaceae,Ranunculaceae,Orobanchaceae,Asparagaceae,Fabaceae,Rosaceae and Asteraceae,with 6,7,8,8,10,10,and 22 species,respectively.Although representing only 11.7%of the total number of families,these families had a species occupancy rate of over 44.1%.At the genus level,Pedicularis is the most dominant genus with 6 species,while 92 genera contain only 1 species,accounting for 77.3%of the total number of genera.In a word,our research has updated the plant resources and diversity in Liupan Mountains.Furthermore,by providing practical and meaningful suggestions for strengthening the protection and utilization of plant resources in Liupan Mountains,our research is of great significance for maintaining the diverse ecosystem in this area.
文摘Taihang Mountains are situated between Shanxi Province and the North China Plain,spanning Beijing,Hebei,Shanxi,and Henan provinces and cities.The mountains extend from northeast to southwest for over 400 km,naturally deviding the second step from the third one in China.The southeastern area of Taihang Mountains specifically refers to Changzhi City and Jincheng Administrative Region of Shanxi Province.Given Shanxi Province’s robust development plans for the southeast area of Taihang Mountains,the medicinal plant resources in this area will be affected.Therefore,it is imperative and urgent to conduct a comprehensive investigation and study on the medicinal plant resources in the southeast area of Taihang Mountains.By means of field investigation,literature review,and specimen identification,the plant resources and diversity of two counties in the southeast of Taihang Mountains were evaluated.The findings revealed 234 plants species across 172 genera in 70 families,primarily comprising angiosperms.The families with more species included Compositae,Leguminosae,Rosaceae,Labiatae,Ranunculaceae.Among the genera,those with more species were Cynanchum,Selaginella,Clematis,Thalictrum,and Rhamnus.A total of 114 medicinal plants were identified,constituting 48.72%of the total.Regarding medicinal parts,the concentration is in roots and rhizomes,followed by whole plants and fruits.On the basis of investigation and study,some suggestions on the development,utilization,and protection of medicinal plant resources in southeast Taihang Mountains were made.These suggestions provide valuable insights for the study on medicinal plant resources and vegetation in the southeast of Taihang Mountains,serving as a scientific basis for the protection and sustainable utilization of wild medicinal plant resources.
基金This work was funded by the Science and Technology Program of Gansu Province(23ZDFA017,22ZD6FA005)the Third Xinjiang Scientific Expedition Program(2022xjkk0802).
文摘Characterization of the spatial and temporal variability of stable isotopes in surface water is essential for interpreting hydrological processes.In this study,we collected the water samples of river water,groundwater,and reservoir water in the Burqin River Basin of the Altay Mountains,China in 2021,and characterized the oxygen and hydrogen isotope variations in different water bodies via instrumental analytics and modeling.Results showed significant seasonal variations in stable isotope ratios of oxygen and hydrogen(δ18O andδ2H,respectively)and significant differences inδ18O andδ2H among different water bodies.Higherδ18O andδ2H values were mainly found in river water,while groundwater and reservoir water had lower isotope ratios.River water and groundwater showed differentδ18O-δ2H relationships with the local meteoric water line,implying that river water and groundwater are controlled by evaporative enrichment and multi-source recharge processes.The evaporative enrichment experienced by reservoir water was less significant and largely influenced by topography,recharge sources,local moisture cycling,and anthropogenic factors.Higher deuterium excess(d-excess)value of 14.34‰for river water probably represented the isotopic signature of combined contributions from direct precipitation,snow and glacial meltwater,and groundwater recharge.The average annual d-excess values of groundwater(10.60‰)and reservoir water(11.49‰)were similar to the value of global precipitation(10.00‰).The findings contribute to understanding the hydroclimatic information reflected in the month-by-month variations in stable isotopes in different water bodies and provide a reference for the study of hydrological processes and climate change in the Altay Mountains,China.