This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Bouss...This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3).展开更多
This article considers the global regularity to the initial-boundary value problem for the 2D incompressible MHD with mixed partial dissipation and magnetic diffusion. To overcome the difficulty caused by the vanishin...This article considers the global regularity to the initial-boundary value problem for the 2D incompressible MHD with mixed partial dissipation and magnetic diffusion. To overcome the difficulty caused by the vanishing viscosities, we first establish the elliptic system for ux and by, which are estimated by 7 × us and × by, respectively. Then, we establish the global estimates for × u and ×b.展开更多
In this paper,we prove the global well-posedness of the 2 D Boussinesq equations with three kinds of partial dissipation;among these the initial data(u_(0),θ_(0))is required such that its own and the derivative of on...In this paper,we prove the global well-posedness of the 2 D Boussinesq equations with three kinds of partial dissipation;among these the initial data(u_(0),θ_(0))is required such that its own and the derivative of one of its directions(x,y)are assumed to be L^(2)(R^(2)).Our results only need the lower regularity of the initial data,which ensures the uniqueness of the solutions.展开更多
This paper studies the global regularity of 2D incompressible anisotropic magnetomicropolar fluid equations with partial viscosity. Ma [22](Ma L. Nonlinear Anal: Real World Appl, 2018, 40: 95–129) examined the global...This paper studies the global regularity of 2D incompressible anisotropic magnetomicropolar fluid equations with partial viscosity. Ma [22](Ma L. Nonlinear Anal: Real World Appl, 2018, 40: 95–129) examined the global regularity of the 2D incompressible magnetomicropolar fluid system for 21 anisotropic partial viscosity cases. He proved the global existence of a classical solution for some cases and established the conditional global regularity for some other cases. In this paper, we also investigate the global regularity of 12 cases in [22]and some other new partial viscosity cases. The global regularity is established by providing new regular conditions. Our work improves some results in [22] in this sense of weaker regular criteria.展开更多
For a kind of partially dissipative quasilinear hyperbolic systems without Shizuta-Kawashima condition,in which all the characteristics,except a weakly linearly degenerate one,are involved in the dissipation,the globa...For a kind of partially dissipative quasilinear hyperbolic systems without Shizuta-Kawashima condition,in which all the characteristics,except a weakly linearly degenerate one,are involved in the dissipation,the global existence of H 2 classical solution to the Cauchy problem with small initial data is obtained.展开更多
基金supported by National Natural Science Foundation of China(12071391,12231016)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010860)。
文摘This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3).
基金supported by the Scientific Research Funds of Huaqiao University(14BS309)the National Natural Science Foundation of China(11526091)
文摘This article considers the global regularity to the initial-boundary value problem for the 2D incompressible MHD with mixed partial dissipation and magnetic diffusion. To overcome the difficulty caused by the vanishing viscosities, we first establish the elliptic system for ux and by, which are estimated by 7 × us and × by, respectively. Then, we establish the global estimates for × u and ×b.
基金partially supported by key research grant of the Academy for Multidisciplinary Studies,CNUsupported by NSFC(11901040)+1 种基金Beijing Municipal Commission of Education(KM202011232020)Beijing Natural Science Foundation(1204030)。
文摘In this paper,we prove the global well-posedness of the 2 D Boussinesq equations with three kinds of partial dissipation;among these the initial data(u_(0),θ_(0))is required such that its own and the derivative of one of its directions(x,y)are assumed to be L^(2)(R^(2)).Our results only need the lower regularity of the initial data,which ensures the uniqueness of the solutions.
基金Lin was supported by the Sichuan Science and Technology Program (2023NSFSC0056)the NNSF of China (11701049)the China Postdoctoral Science Foundation (2017M622989)。
文摘This paper studies the global regularity of 2D incompressible anisotropic magnetomicropolar fluid equations with partial viscosity. Ma [22](Ma L. Nonlinear Anal: Real World Appl, 2018, 40: 95–129) examined the global regularity of the 2D incompressible magnetomicropolar fluid system for 21 anisotropic partial viscosity cases. He proved the global existence of a classical solution for some cases and established the conditional global regularity for some other cases. In this paper, we also investigate the global regularity of 12 cases in [22]and some other new partial viscosity cases. The global regularity is established by providing new regular conditions. Our work improves some results in [22] in this sense of weaker regular criteria.
基金supported by the Fudan University Creative Student Cultivation Program in Key Disciplinary Areas (No. EHH1411208)
文摘For a kind of partially dissipative quasilinear hyperbolic systems without Shizuta-Kawashima condition,in which all the characteristics,except a weakly linearly degenerate one,are involved in the dissipation,the global existence of H 2 classical solution to the Cauchy problem with small initial data is obtained.