In this paper, we consider the partially nonlinear errors-in-variables models when the non- parametric component is measured with additive error. The profile nonlinear least squares estimator of unknown parameter and ...In this paper, we consider the partially nonlinear errors-in-variables models when the non- parametric component is measured with additive error. The profile nonlinear least squares estimator of unknown parameter and the estimator of nonparametric component are constructed, and their asymptotic properties are derived under general assumptions. Finite sample performances of the proposed statistical inference procedures are illustrated by Monte Carlo simulation studies.展开更多
While the random errors are a function of Gaussian random variables that are stationary and long dependent, we investigate a partially linear errors-in-variables(EV) model by the wavelet method. Under general condit...While the random errors are a function of Gaussian random variables that are stationary and long dependent, we investigate a partially linear errors-in-variables(EV) model by the wavelet method. Under general conditions, we obtain asymptotic representation of the parametric estimator, and asymptotic distributions and weak convergence rates of the parametric and nonparametric estimators. At last, the validity of the wavelet method is illuminated by a simulation example and a real example.展开更多
A kind of partially linear errors-in-variables models with replicated net points of observation are studied in this paper. Estimators of unknown parameters are given. Under certain regular conditions, it is shown that...A kind of partially linear errors-in-variables models with replicated net points of observation are studied in this paper. Estimators of unknown parameters are given. Under certain regular conditions, it is shown that the estimators of the unknown parameters are strongly consistent and their a.s. convergence rates are achieved.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.11101014 and 11002005)the Beijing Natural Science Foundation(Grant No.1142002)+2 种基金the Doctoral Fund of Innovation of Beijing Universityof Technologythe Science and Technology Project of Beijing Municipal Education Commission(Grant No.KM201410005010)the Training Programme Foundation for the Beijing Municipal Excellent Talents(GrantNo.2013D005007000005)
文摘In this paper, we consider the partially nonlinear errors-in-variables models when the non- parametric component is measured with additive error. The profile nonlinear least squares estimator of unknown parameter and the estimator of nonparametric component are constructed, and their asymptotic properties are derived under general assumptions. Finite sample performances of the proposed statistical inference procedures are illustrated by Monte Carlo simulation studies.
基金Supported by the National Natural Science Foundation of China(No.11471105,11471223)Scientific Research Item of Education Office,Hubei(No.D20172501)
文摘While the random errors are a function of Gaussian random variables that are stationary and long dependent, we investigate a partially linear errors-in-variables(EV) model by the wavelet method. Under general conditions, we obtain asymptotic representation of the parametric estimator, and asymptotic distributions and weak convergence rates of the parametric and nonparametric estimators. At last, the validity of the wavelet method is illuminated by a simulation example and a real example.
基金Supported by the National Natural Science Foundation of China(No.90104034,No.60373041).
文摘A kind of partially linear errors-in-variables models with replicated net points of observation are studied in this paper. Estimators of unknown parameters are given. Under certain regular conditions, it is shown that the estimators of the unknown parameters are strongly consistent and their a.s. convergence rates are achieved.