Based on the propagation law of cross-spectral density function, studied in this paper are the coherence vortices of partially coherent, quasi-monochromatic singular beams with Gaussian envelope and Schell-model corre...Based on the propagation law of cross-spectral density function, studied in this paper are the coherence vortices of partially coherent, quasi-monochromatic singular beams with Gaussian envelope and Schell-model correlator in the far field, where our main attention is paid to the evolution of far-field coherence vortices into intensity vortices of fully coherent beams. The results show that, although there are usually no zeros of intensity in partially coherent beams with Gaussian envelope and Schell-model correlator~ zeros of spectral degree of coherence exist. The coherence vortices of spectral degree of coherence depend on the relative coherence length, mode index and positions of pairs of points. If a point and mode index are kept fixed, the position of coherence vortices changes with the increase of the relative coherence length. For the low coherent case there is a circular phase dislocation. In the coherent limit coherence vortices become intensity vortices of fully coherent Laguerre-Gaussian beams.展开更多
Under the quadratic approximation of the Rytov's phase structure function, this paper derives the general closed-form expressions for the mean-squared width and the angular spread of partially coherent beams in turbu...Under the quadratic approximation of the Rytov's phase structure function, this paper derives the general closed-form expressions for the mean-squared width and the angular spread of partially coherent beams in turbulence. It finds that under a certain condition different types of partially coherent beams may have the same directionality as a fully coherent Gaussian beam in free space and also in atmospheric turbulence if the angular spread is chosen as the characteristic parameter of beam directionality. On the other hand, it shows that generally, the directionality of partially coherent beams expressed in terms of the angular spread is not consistent with that in terms of the normalized far-field average intensity distribution in free space, but the consistency can be achieved due to turbulence.展开更多
A novel lateral double-diffused metal–oxide semiconductor(LDMOS) with a high breakdown voltage(BV) and low specific on-resistance(Ron.sp) is proposed and investigated by simulation. It features a junction field...A novel lateral double-diffused metal–oxide semiconductor(LDMOS) with a high breakdown voltage(BV) and low specific on-resistance(Ron.sp) is proposed and investigated by simulation. It features a junction field plate(JFP) over the drift region and a partial N-buried layer(PNB) in the P-substrate. The JFP not only smoothes the surface electric field(E-field), but also brings in charge compensation between the JFP and the N-drift region, which increases the doping concentration of the N-drift region. The PNB reshapes the equipotential contours, and thus reduces the E-field peak on the drain side and increases that on the source side. Moreover, the PNB extends the depletion width in the substrate by introducing an additional vertical diode, resulting in a significant improvement on the vertical BV. Compared with the conventional LDMOS with the same dimensional parameters, the novel LDMOS has an increase in BV value by 67.4%,and a reduction in Ron.sp by 45.7% simultaneously.展开更多
The Substorm Current Wedge (SCW) occurrence in the late growth and onset phases of substorms was proposed as the current system which disrupts cross-tail current by diverting it to the ionosphere. The closure curren...The Substorm Current Wedge (SCW) occurrence in the late growth and onset phases of substorms was proposed as the current system which disrupts cross-tail current by diverting it to the ionosphere. The closure current for the SCW originally was suggested to be the strong westward auroral electrojet (WEJ). However, the SCW-WEJ system has no viable generator current. Similarly, the asymmetric or Partial Ring Current (PRC) increases in strength during the growth phase, and is sometimes associated with an enhanced Region 2 field-aligned current (FAC) closing to the ionosphere, but specifics of that closure have been lacking. Here we present a tmifying picture which includes the SCW post- and pre-midnight (AM and PM, respectively) currents and a generator current in the midnight portion of the PRC system, with these currents based upon a model of the nightside magnetotail magnetic geometry. That geometry consists of open north and south lobe regions surrounding a plasmasheet with two types of closed field line regions-stretched lines in the central part of the plasmasheet (SPS) and dipolar lines (DPS) between the low lati- tude boundary layer (LLBL) regions and the SPS. There is also an important plasmasheet transition region (TPS) in which the dipolar field near the plasmapause gradually transforms to stretched lines near the earthward edge of the SPS, and in which the midnight part of the PRC flows. We propose that our proposed near-onset current system consists of a central current which be- comes part of the midnight sector PRC and which is the generator, to which are linked two three-part current systems, one on the dawnside and one on the duskside. The three-part systems consist of up and down FACs closing as Pedersen currents in the iono- sphere. These 3-part systems are not activated until near-onset is reached, because of a lack of ionospheric conductivity in the appropriate locations where the Pedersen current closure occurs. The initial downward FAC of the 3-part dawnside system and the final upward FAC of the 3-part duskside system correspond to the AM and PM current segments, respectively, of the originally proposed SCW.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10574097).
文摘Based on the propagation law of cross-spectral density function, studied in this paper are the coherence vortices of partially coherent, quasi-monochromatic singular beams with Gaussian envelope and Schell-model correlator in the far field, where our main attention is paid to the evolution of far-field coherence vortices into intensity vortices of fully coherent beams. The results show that, although there are usually no zeros of intensity in partially coherent beams with Gaussian envelope and Schell-model correlator~ zeros of spectral degree of coherence exist. The coherence vortices of spectral degree of coherence depend on the relative coherence length, mode index and positions of pairs of points. If a point and mode index are kept fixed, the position of coherence vortices changes with the increase of the relative coherence length. For the low coherent case there is a circular phase dislocation. In the coherent limit coherence vortices become intensity vortices of fully coherent Laguerre-Gaussian beams.
基金supported by the National Natural Science Foundation of China (Grant No. 60778048)
文摘Under the quadratic approximation of the Rytov's phase structure function, this paper derives the general closed-form expressions for the mean-squared width and the angular spread of partially coherent beams in turbulence. It finds that under a certain condition different types of partially coherent beams may have the same directionality as a fully coherent Gaussian beam in free space and also in atmospheric turbulence if the angular spread is chosen as the characteristic parameter of beam directionality. On the other hand, it shows that generally, the directionality of partially coherent beams expressed in terms of the angular spread is not consistent with that in terms of the normalized far-field average intensity distribution in free space, but the consistency can be achieved due to turbulence.
基金Project supported by the National Natural Science Foundation of China(Grant No.61376079)the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No.NCET-11-0062)the Postdoctoral Science Foundation of China(Grant Nos.2012T50771 and XM2012004)
文摘A novel lateral double-diffused metal–oxide semiconductor(LDMOS) with a high breakdown voltage(BV) and low specific on-resistance(Ron.sp) is proposed and investigated by simulation. It features a junction field plate(JFP) over the drift region and a partial N-buried layer(PNB) in the P-substrate. The JFP not only smoothes the surface electric field(E-field), but also brings in charge compensation between the JFP and the N-drift region, which increases the doping concentration of the N-drift region. The PNB reshapes the equipotential contours, and thus reduces the E-field peak on the drain side and increases that on the source side. Moreover, the PNB extends the depletion width in the substrate by introducing an additional vertical diode, resulting in a significant improvement on the vertical BV. Compared with the conventional LDMOS with the same dimensional parameters, the novel LDMOS has an increase in BV value by 67.4%,and a reduction in Ron.sp by 45.7% simultaneously.
文摘The Substorm Current Wedge (SCW) occurrence in the late growth and onset phases of substorms was proposed as the current system which disrupts cross-tail current by diverting it to the ionosphere. The closure current for the SCW originally was suggested to be the strong westward auroral electrojet (WEJ). However, the SCW-WEJ system has no viable generator current. Similarly, the asymmetric or Partial Ring Current (PRC) increases in strength during the growth phase, and is sometimes associated with an enhanced Region 2 field-aligned current (FAC) closing to the ionosphere, but specifics of that closure have been lacking. Here we present a tmifying picture which includes the SCW post- and pre-midnight (AM and PM, respectively) currents and a generator current in the midnight portion of the PRC system, with these currents based upon a model of the nightside magnetotail magnetic geometry. That geometry consists of open north and south lobe regions surrounding a plasmasheet with two types of closed field line regions-stretched lines in the central part of the plasmasheet (SPS) and dipolar lines (DPS) between the low lati- tude boundary layer (LLBL) regions and the SPS. There is also an important plasmasheet transition region (TPS) in which the dipolar field near the plasmapause gradually transforms to stretched lines near the earthward edge of the SPS, and in which the midnight part of the PRC flows. We propose that our proposed near-onset current system consists of a central current which be- comes part of the midnight sector PRC and which is the generator, to which are linked two three-part current systems, one on the dawnside and one on the duskside. The three-part systems consist of up and down FACs closing as Pedersen currents in the iono- sphere. These 3-part systems are not activated until near-onset is reached, because of a lack of ionospheric conductivity in the appropriate locations where the Pedersen current closure occurs. The initial downward FAC of the 3-part dawnside system and the final upward FAC of the 3-part duskside system correspond to the AM and PM current segments, respectively, of the originally proposed SCW.