为研究不同养殖方式下宁都黄鸡肌肉关键挥发性风味物质,将试验鸡随机分为笼养组和平养组,饲喂同一日粮。试验鸡达上市日龄时对鸡肉进行感官品尝评价和挥发性风味物质检测,并采用正交偏最小二乘-判别分析(orthogonal partial least squar...为研究不同养殖方式下宁都黄鸡肌肉关键挥发性风味物质,将试验鸡随机分为笼养组和平养组,饲喂同一日粮。试验鸡达上市日龄时对鸡肉进行感官品尝评价和挥发性风味物质检测,并采用正交偏最小二乘-判别分析(orthogonal partial least squares-discriminant analysis,OPLS-DA)方法筛选与不同养殖方式相关的差异性风味物质。结果表明:平养组和笼养组共有的挥发性风味物质27种,主要为酚类、醇类和烃类。挥发性风味物质中,己醛、1-辛烯-3-醇、E-2-壬烯醛、正己醇、壬醛、2,3-戊二酮、癸醛、2,3-辛二酮、E-2-辛烯醛为具有显著性差异的挥发性风味物质。综上,这一研究可为地方鸡肉品质基于风味物质的评价提供科学依据。展开更多
The UV absorption spectra of o-naphthol,α-naphthylamine,2,7-dihydroxy naphthalene,2,4-dimethoxy ben- zaldehyde and methyl salicylate,overlap severely;therefore it is impossible to determine them in mixtures by tradit...The UV absorption spectra of o-naphthol,α-naphthylamine,2,7-dihydroxy naphthalene,2,4-dimethoxy ben- zaldehyde and methyl salicylate,overlap severely;therefore it is impossible to determine them in mixtures by traditional spectrophotometric methods.In this paper,the partial least-squares(PLS)regression is applied to the simultaneous determination of these compounds in mixtures by UV spectrophtometry without any pretreatment of the samples.Ten synthetic mixture samples are analyzed by the proposed method.The mean recoveries are 99.4%,996%,100.2%,99.3% and 99.1%,and the relative standard deviations(RSD) are 1.87%,1.98%,1.94%,0.960% and 0.672%,respectively.展开更多
Breast cancer is one of the malignant tumors having high incidence in women,the incidence of breast cancer has increased in all parts of the world since twentieth century,but its etiology is not yet completely clear,s...Breast cancer is one of the malignant tumors having high incidence in women,the incidence of breast cancer has increased in all parts of the world since twentieth century,but its etiology is not yet completely clear,so it is very important to detect breast cells.In this paper,we built a regression model to detect breast cells,and generated a method for predicting the formation of benign and malignant breast cells by training the model,then we used the 10 features of breast cells to predict it,the results reaching upto 93.67%accuracy,it was very effective to predict and analyse whether the breast cells getting cancer,It had an important role in the diagnosis and prevention of breast cancer.展开更多
Partial least squares(PLS)model is the most typical data-driven method for quality-related industrial tasks like soft sensor.However,only linear relations are captured between the input and output data in the PLS.It i...Partial least squares(PLS)model is the most typical data-driven method for quality-related industrial tasks like soft sensor.However,only linear relations are captured between the input and output data in the PLS.It is difficult to obtain the remaining nonlinear information in the residual subspaces,which may deteriorate the prediction performance in complex industrial processes.To fully utilize data information in PLS residual subspaces,a deep residual PLS(DRPLS)framework is proposed for quality prediction in this paper.Inspired by deep learning,DRPLS is designed by stacking a number of PLSs successively,in which the input residuals of the previous PLS are used as the layer connection.To enhance representation,nonlinear function is applied to the input residuals before using them for stacking highlevel PLS.For each PLS,the output parts are just the output residuals from its previous PLS.Finally,the output prediction is obtained by adding the results of each PLS.The effectiveness of the proposed DRPLS is validated on an industrial hydrocracking process.展开更多
Chemical oxygen demand (COD) is an important index to measure the degree of water pollution. In this paper, near-infrared technology is used to obtain 148 wastewater spectra to predict the COD value in wastewater. Fir...Chemical oxygen demand (COD) is an important index to measure the degree of water pollution. In this paper, near-infrared technology is used to obtain 148 wastewater spectra to predict the COD value in wastewater. First, the partial least squares regression (PLS) model was used as the basic model. Monte Carlo cross-validation (MCCV) was used to select 25 samples out of 148 samples that did not conform to conventional statistics. Then, the interval partial least squares (iPLS) regression modeling was carried out on 123 samples, and the spectral bands were divided into 40 subintervals. The optimal subintervals are 20 and 26, and the optimal correlation coefficient of the test set (RT) is 0.58. Further, the waveband is divided into five intervals: 17, 19, 20, 22 and 26. When the number of joint intervals under each interval is three, the optimal RT is 0.71. When the number of joint subintervals is four, the optimal RT is 0.79. Finally, convolutional neural network (CNN) was used for quantitative prediction, and RT was 0.9. The results show that CNN can automatically screen the features inside the data, and the quantitative prediction effect is better than that of iPLS and synergy interval partial least squares model (SiPLS) with joint subinterval three and four, indicating that CNN can be used for quantitative analysis of water pollution degree.展开更多
高温燃气红外光谱特征是判断燃气成分和浓度的有效途径。针对高温燃气红外辐射特性复杂、建模难度高的问题,研究了一种基于间隔偏最小二乘(interval Partial Least Squares,iPLS)和核主成分分析(Kernel Principal Component Analysis,KP...高温燃气红外光谱特征是判断燃气成分和浓度的有效途径。针对高温燃气红外辐射特性复杂、建模难度高的问题,研究了一种基于间隔偏最小二乘(interval Partial Least Squares,iPLS)和核主成分分析(Kernel Principal Component Analysis,KPCA)的特征提取算法。首先通过iPLS进行预筛选,确定具有最优预测能力的特征光谱波段,避免单个子区间建模过程中有用吸收峰信息的遗失;其次,利用KPCA降低数据维度,保留贡献率高的关键特征,降低成分预测模型的复杂度。仿真结果表明,经过iPLS-KPCA方法特征提取后,预测模型的复杂度大幅下降,且预测能力显著提升。展开更多
Many complex traits are highly correlated rather than independent. By taking the correlation structure of multiple traits into account, joint association analyses can achieve both higher statistical power and more acc...Many complex traits are highly correlated rather than independent. By taking the correlation structure of multiple traits into account, joint association analyses can achieve both higher statistical power and more accurate estimation. To develop a statistical approach to joint association analysis that includes allele detection and genetic effect estimation, we combined multivariate partial least squares regression with variable selection strategies and selected the optimal model using the Bayesian Information Criterion(BIC). We then performed extensive simulations under varying heritabilities and sample sizes to compare the performance achieved using our method with those obtained by single-trait multilocus methods. Joint association analysis has measurable advantages over single-trait methods, as it exhibits superior gene detection power, especially for pleiotropic genes. Sample size, heritability,polymorphic information content(PIC), and magnitude of gene effects influence the statistical power, accuracy and precision of effect estimation by the joint association analysis.展开更多
The identification of liquor brands is very important for food safety. Most of the fake liquors are usually made into the products with the same flavor and alcohol content as regular brand, so the identification for t...The identification of liquor brands is very important for food safety. Most of the fake liquors are usually made into the products with the same flavor and alcohol content as regular brand, so the identification for the liquor brands with the same flavor and the same alcohol content is essential. However, it is also difficult because the components of such liquor samples are very similar. Near-infrared (NIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA) was applied to identification of liquor brands with the same flavor and alcohol content. A total of 160 samples of Luzhou Laojiao liquor and 200 samples of non-Luzhou Laojiao liquor with the same flavor and alcohol content were used for identification. Samples of each type were randomly divided into the modeling and validation sets. The modeling samples were further divided into calibration and prediction sets using the Kennard-Stone algorithm to achieve uniformity and representativeness. In the modeling and validation processes based on PLS-DA method, the recognition rates of samples achieved 99.1% and 98.7%, respectively. The results show high prediction performance for the identification of liquor brands, and were obviously better than those obtained from the principal component linear discriminant analysis method. NIR spectroscopy combined with the PLS-DA method provides a quick and effective means of the discriminant analysis of liquor brands, and is also a promising tool for large-scale inspection of liquor food safety.展开更多
Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, co...Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.展开更多
文摘为研究不同养殖方式下宁都黄鸡肌肉关键挥发性风味物质,将试验鸡随机分为笼养组和平养组,饲喂同一日粮。试验鸡达上市日龄时对鸡肉进行感官品尝评价和挥发性风味物质检测,并采用正交偏最小二乘-判别分析(orthogonal partial least squares-discriminant analysis,OPLS-DA)方法筛选与不同养殖方式相关的差异性风味物质。结果表明:平养组和笼养组共有的挥发性风味物质27种,主要为酚类、醇类和烃类。挥发性风味物质中,己醛、1-辛烯-3-醇、E-2-壬烯醛、正己醇、壬醛、2,3-戊二酮、癸醛、2,3-辛二酮、E-2-辛烯醛为具有显著性差异的挥发性风味物质。综上,这一研究可为地方鸡肉品质基于风味物质的评价提供科学依据。
文摘The UV absorption spectra of o-naphthol,α-naphthylamine,2,7-dihydroxy naphthalene,2,4-dimethoxy ben- zaldehyde and methyl salicylate,overlap severely;therefore it is impossible to determine them in mixtures by traditional spectrophotometric methods.In this paper,the partial least-squares(PLS)regression is applied to the simultaneous determination of these compounds in mixtures by UV spectrophtometry without any pretreatment of the samples.Ten synthetic mixture samples are analyzed by the proposed method.The mean recoveries are 99.4%,996%,100.2%,99.3% and 99.1%,and the relative standard deviations(RSD) are 1.87%,1.98%,1.94%,0.960% and 0.672%,respectively.
文摘Breast cancer is one of the malignant tumors having high incidence in women,the incidence of breast cancer has increased in all parts of the world since twentieth century,but its etiology is not yet completely clear,so it is very important to detect breast cells.In this paper,we built a regression model to detect breast cells,and generated a method for predicting the formation of benign and malignant breast cells by training the model,then we used the 10 features of breast cells to predict it,the results reaching upto 93.67%accuracy,it was very effective to predict and analyse whether the breast cells getting cancer,It had an important role in the diagnosis and prevention of breast cancer.
基金supported in part by the National Natural Science Foundation of China(62173346,61988101,92267205,62103360,62303494)。
文摘Partial least squares(PLS)model is the most typical data-driven method for quality-related industrial tasks like soft sensor.However,only linear relations are captured between the input and output data in the PLS.It is difficult to obtain the remaining nonlinear information in the residual subspaces,which may deteriorate the prediction performance in complex industrial processes.To fully utilize data information in PLS residual subspaces,a deep residual PLS(DRPLS)framework is proposed for quality prediction in this paper.Inspired by deep learning,DRPLS is designed by stacking a number of PLSs successively,in which the input residuals of the previous PLS are used as the layer connection.To enhance representation,nonlinear function is applied to the input residuals before using them for stacking highlevel PLS.For each PLS,the output parts are just the output residuals from its previous PLS.Finally,the output prediction is obtained by adding the results of each PLS.The effectiveness of the proposed DRPLS is validated on an industrial hydrocracking process.
文摘Chemical oxygen demand (COD) is an important index to measure the degree of water pollution. In this paper, near-infrared technology is used to obtain 148 wastewater spectra to predict the COD value in wastewater. First, the partial least squares regression (PLS) model was used as the basic model. Monte Carlo cross-validation (MCCV) was used to select 25 samples out of 148 samples that did not conform to conventional statistics. Then, the interval partial least squares (iPLS) regression modeling was carried out on 123 samples, and the spectral bands were divided into 40 subintervals. The optimal subintervals are 20 and 26, and the optimal correlation coefficient of the test set (RT) is 0.58. Further, the waveband is divided into five intervals: 17, 19, 20, 22 and 26. When the number of joint intervals under each interval is three, the optimal RT is 0.71. When the number of joint subintervals is four, the optimal RT is 0.79. Finally, convolutional neural network (CNN) was used for quantitative prediction, and RT was 0.9. The results show that CNN can automatically screen the features inside the data, and the quantitative prediction effect is better than that of iPLS and synergy interval partial least squares model (SiPLS) with joint subinterval three and four, indicating that CNN can be used for quantitative analysis of water pollution degree.
文摘高温燃气红外光谱特征是判断燃气成分和浓度的有效途径。针对高温燃气红外辐射特性复杂、建模难度高的问题,研究了一种基于间隔偏最小二乘(interval Partial Least Squares,iPLS)和核主成分分析(Kernel Principal Component Analysis,KPCA)的特征提取算法。首先通过iPLS进行预筛选,确定具有最优预测能力的特征光谱波段,避免单个子区间建模过程中有用吸收峰信息的遗失;其次,利用KPCA降低数据维度,保留贡献率高的关键特征,降低成分预测模型的复杂度。仿真结果表明,经过iPLS-KPCA方法特征提取后,预测模型的复杂度大幅下降,且预测能力显著提升。
基金supported by grants from the National Program on the Development of Basic Research (2011CB100100)the Priority Academic Program Development of Jiangsu Higher Education Institutions, the National Natural Science Foundations (31391632, 31200943, 31171187, and 91535103)+3 种基金the National High-tech R&D Program (863 Program) (2014AA10A601-5)the Natural Science Foundations of Jiangsu Province (BK20150010)the Natural Science Foundation of the Jiangsu Higher Education Institutions (14KJA210005)the Innovative Research Team of Universities in Jiangsu Province (KYLX_1352)
文摘Many complex traits are highly correlated rather than independent. By taking the correlation structure of multiple traits into account, joint association analyses can achieve both higher statistical power and more accurate estimation. To develop a statistical approach to joint association analysis that includes allele detection and genetic effect estimation, we combined multivariate partial least squares regression with variable selection strategies and selected the optimal model using the Bayesian Information Criterion(BIC). We then performed extensive simulations under varying heritabilities and sample sizes to compare the performance achieved using our method with those obtained by single-trait multilocus methods. Joint association analysis has measurable advantages over single-trait methods, as it exhibits superior gene detection power, especially for pleiotropic genes. Sample size, heritability,polymorphic information content(PIC), and magnitude of gene effects influence the statistical power, accuracy and precision of effect estimation by the joint association analysis.
文摘The identification of liquor brands is very important for food safety. Most of the fake liquors are usually made into the products with the same flavor and alcohol content as regular brand, so the identification for the liquor brands with the same flavor and the same alcohol content is essential. However, it is also difficult because the components of such liquor samples are very similar. Near-infrared (NIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA) was applied to identification of liquor brands with the same flavor and alcohol content. A total of 160 samples of Luzhou Laojiao liquor and 200 samples of non-Luzhou Laojiao liquor with the same flavor and alcohol content were used for identification. Samples of each type were randomly divided into the modeling and validation sets. The modeling samples were further divided into calibration and prediction sets using the Kennard-Stone algorithm to achieve uniformity and representativeness. In the modeling and validation processes based on PLS-DA method, the recognition rates of samples achieved 99.1% and 98.7%, respectively. The results show high prediction performance for the identification of liquor brands, and were obviously better than those obtained from the principal component linear discriminant analysis method. NIR spectroscopy combined with the PLS-DA method provides a quick and effective means of the discriminant analysis of liquor brands, and is also a promising tool for large-scale inspection of liquor food safety.
基金Supported by "863" Program of P. R. China(2002AA2Z4291)
文摘Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.