期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Wave Interaction with a Partially Reflecting Vertical Wall Protected by a Submerged Porous Bar 被引量:1
1
作者 ZHAO Yang LIU Yong LI Huajun 《Journal of Ocean University of China》 SCIE CAS 2016年第4期619-626,共8页
This study gives an analytical solution for wave interaction with a partially reflecting vertical wall protected by a submerged porous bar based on linear potential theory. The whole study domain is divided into multi... This study gives an analytical solution for wave interaction with a partially reflecting vertical wall protected by a submerged porous bar based on linear potential theory. The whole study domain is divided into multiple sub-regions in relation to the structures. The velocity potential in each sub-region is written as a series solution by the separation of variables. A partially reflecting boundary condition is used to describe the partial reflection of a vertical wall. Unknown expansion coefficients in the series solutions are determined by matching velocity potentials among different sub-regions. The analytical solution is verified by an independently developed multi-domain boundary element method(BEM) solution and experimental data. The wave run-up and wave force on the partially reflecting vertical wall are estimated and examined, which can be effectively reduced by the submerged porous bar. The horizontal space between the vertical wall and the submerged porous bar is a key factor, which affects the sheltering function of the porous bar. The wave resonance between the porous bar and the vertical wall may disappear when the vertical wall has a low reflection coefficient. The present analytical solution may be used to determine the optimum parameters of structures at a preliminary engineering design stage. 展开更多
关键词 reflecting submerged preliminary porous partially matching disappear verified carefully satisfy
下载PDF
Evaluation and development of a predictive model for conjugate phase change heat transfer of energy storage system partially filled with porous media
2
作者 Wenbin Xu Zibiao Liu +1 位作者 Si-Min Huang Yijie Zhuang 《Energy Storage and Saving》 2022年第4期293-308,共16页
The present study proposes a predictive model to explore the effect of partially filled porous media on the con-jugate heat transfer characteristic of phase change material(PCM)with interfacial coupling conditions bet... The present study proposes a predictive model to explore the effect of partially filled porous media on the con-jugate heat transfer characteristic of phase change material(PCM)with interfacial coupling conditions between pure fluid region and porous region.The enthalpy-porosity method,local thermal non-equilibrium model and Darcy-Forchheimer law are comprehensively considered to describe the convective heat transfer process in porous media.The modified model is then validated by benchmark data provided by particle image velocimetry(PIV)ex-periments.The phase change behavior,heat transfer efficiency and energy storage performance are numerically investigated for different partial porous filling strategies in terms of filling content,position,height of porous foam and inclination angles of cavity.The results indicate that due to the resistance in porous region,the shear stress exerted by the main vortex(natural convection)in pure fluid region and the momentum transferred,a secondary vortex phenomenon appears in the porous region near the fluid/porous interface.Moreover,such dis-continuity of permeability and fluid-to-porous thermal conductivity results in the cusp of phase change interface at the horizontal fluid/porous boundary.Among four partial porous filling cases,the lower porous filling one has more desirable heat transfer performance,and the 3/4H lower porous filling configuration is the best solution for optimization of the latent heat thermal energy storage(LHTES)systems.For tilted cavity,the increase of inclination angle positively affects the heat transfer efficiency as well as the energy storage rate of the LHTES system,where the performance of 3/4H lower porous filling configuration is further highlighted. 展开更多
关键词 Predictive model Conjugate heat transfer Energy storage partial porous filling configuration Fluid/porous interface
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部