The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poo...The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poor crystal structure stability of Ni-rich cathode.Several coating strategies are previously employed to enhance the stability of the cathodic interface and crystal structure for Ni-rich cathode.However,these methods can hardly achieve simplicity and high efficiency simultaneously.In this work,polyacrylic acid(PAA)replaced traditional PVDF as a binder for cathode,which can achieve a uniform PAA-Li(LixPAA(0<x≤1))coating layer on the surface of single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)due to H^(+)/Li^(+)exchange reaction during the initial charging-discharging process.The formation of PAA-Li coating layer on cathode can promote interfacial Li^(+)transport and enhance the stability of the cathodic interface.Furthermore,the partially-protonated surface of SC-NCM83 casued by H^(+)/Li^(+)exchange reaction can restrict Ni ions transport to enhance the crystal structure stability.The proposed SC-NCM83-PAA exhibits superior cycling performance with a retention of 92%compared with that(57.3%)of SC-NCM83-polyvinylidene difluoride(PVDF)after 200 cycles.This work provides a practical strategy to construct high-performance cathodes for ASSBs.展开更多
To ensure a safe and stable CO_(2)storage,pressure responses at an observation well are expected to be an important and useful field monitoring item to estimate the CO_(2)storage behaviors and the aquifer parameters d...To ensure a safe and stable CO_(2)storage,pressure responses at an observation well are expected to be an important and useful field monitoring item to estimate the CO_(2)storage behaviors and the aquifer parameters during and after injecting CO_(2),because it can detect whether the injected CO_(2)leaks to the ground surface or the bottom of the sea.In this study,pressure responses were simulated to present design factors such as well location and pressure transmitter of the observation well.Numerical simulations on the pressure response and the time-delay from pressure build-up after CO_(2)injection were conducted by considering aquifer parameters and distance from the CO_(2)injection well to an observation well.The measurement resolution of a pressure transmitter installed in the observation well was presented based on numerical simulation results of the pressure response against pressure build-up at the injection well and CO_(2)plume front propagations.Furthermore,the pressure response at an observation well was estimated by comparing the numerical simulation results with the curve of CO_(2)saturation and relative permeability.It was also suggested that the analytical solution can be used for the analysis of the pressure response tendency using pressure build-up and dimensionless parameters of hydraulic diffusivity.Thus,a criterion was established for selecting a pressure transducer installed at an observation well to monitor the pressure responses with sufficient accuracy and resolution,considering the distance from the injection well and the pressure build-up at the injection well,for future carbon capture and storage(CCS)projects.展开更多
The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing t...The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO_(2)design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak distribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO_(2)weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO_(2)(PPVCO_(2))is significantly smaller than that caused by blasting(PPVexplosive).The ratio of PPVexplosive to PPVCO_(2)is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO_(2)is relatively simple with a narrow frequency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control.展开更多
Biogas is a renewable and clean energy source that plays an important role in the current environment of lowcarbon transition.If high-content CO_(2) in biogas can be separated,transformed,and utilized,it not only real...Biogas is a renewable and clean energy source that plays an important role in the current environment of lowcarbon transition.If high-content CO_(2) in biogas can be separated,transformed,and utilized,it not only realizes high-value utilization of biogas but also promotes carbon reduction in the biogas field.To improve the combustion stability of biogas,an inhomogeneous,partially premixed stratified(IPPS)combustion model was adopted in this study.The thermal flame structure and stability were investigated for a wide range of mixture inhomogeneities,turbulence levels,CO_(2) concentrations,air-to-fuel velocity ratios,and combustion energies in a concentric flow slot burner(CFSB).A fine-wire thermocouple is used to resolve the thermal flame structure.The flame size was reduced by increasing the CO_(2) concentration and the flames became lighter blue.The flame temperature also decreased with increase in CO_(2) concentration.Flame stability was reduced by increasing the CO_(2) concentration.However,at a certain level of mixture inhomogeneity,the concentration of CO_(2) in the IPPS mode did not affect the stability.Accordingly,the IPPS mode of combustion should be suitable for the combustion and stabilization of biogas.This should support the design of highly stabilized biogas turbulent flames independent of CO_(2) concentration.The data show that the lower stability conditions are partially due to the change in fuel combustion energy,which is characterized by the Wobbe index(WI).In addition,at a certain level of mixture inhomogeneity,the effect of the WI on flame stability becomes dominant.展开更多
Foreign body reactions to the wear debris and corrosion products from the implants,and bacterial infections are the main factors leading to the implant failures.In order to resolve these problems,the antibacterial TiN...Foreign body reactions to the wear debris and corrosion products from the implants,and bacterial infections are the main factors leading to the implant failures.In order to resolve these problems,the antibacterial TiN/Cu nanocomposite coatings with various N_(2) partial pressures were deposited on 304 stainless steels(SS)using an arc ion plating(AIP)system,named TiN/Cu-x(x=0.5,1.0,1.5 Pa).The results of X-ray diffraction analysis,energy-dispersive X-ray spectroscopy,and scanning electron microscopy showed that the N_(2) partial pressures determined the Cu contents,surface defects,and crystallite sizes of TiN/Cu nanocomposite coatings,which further influenced the comprehensive abilities.And the hardness and wear resistances of TiN/Cu coatings were enhanced with increase of the crystallite sizes.Under the co-actions of surface defects,crystallite sizes,and Cu content,TiN/Cu-1.0 and TiN/Cu-1.5 coatings possessed excellent corrosion resistance.Besides,the biological tests proved that all the TiN/Cu coatings showed no cytotoxicity with strong antibacterial ability.Among them,TiN/Cu-1.5 coating significantly promoted the cell proliferation,which is expected to be a novel antibacterial,corrosion-resistant,and wear-resistant coating on the surfaces of medical implants.展开更多
Gas breakthrough pressure is a key parameter to evaluate the sealing capacity of caprock,and it also plays important roles in safety and capacity of CO_(2)geological storage.Based on the published experimental results...Gas breakthrough pressure is a key parameter to evaluate the sealing capacity of caprock,and it also plays important roles in safety and capacity of CO_(2)geological storage.Based on the published experimental results,we present numerical simulations on CO_(2)breakthrough pressure in unsaturated low-permeability rock under 9 multiple P-T conditions(which can keep CO_(2)in gaseous,liquid and supercritical states)and thus,a numerical method which can be used to accurately predict CO_(2)breakthrough pressure on rock-core scale is proposed.The simulation results show that CO_(2)breakthrough pressure and breakthrough time are exponential correlated with P-T conditions.Meanwhile,pressure has stronger effects on experimental results than that of temperature.Moreover,we performed sensitivity studies on the pore distribution indexλ(0.6,0.7,0.8,and 0.9)in van Genuchten-Muale model.Results show that with the increase ofλ,CO_(2)breakthrough pressure and breakthrough time both show decreasing trends.In other words,the larger the value ofλis,the better the permeability of the caprock is,and the worse the CO_(2)sealing capacity is.The numerical method established in this study can provide an important reference for the prediction of gas breakthrough pressure on rock-core scale and for related numerical studies.展开更多
Carbon dioxide(CO_(2))emissions from aquatic ecosystems are an important component of the karst carbon cycle process and also a key indicator for assessing the effect of karst carbon sinks.This paper reviewed the CO_(...Carbon dioxide(CO_(2))emissions from aquatic ecosystems are an important component of the karst carbon cycle process and also a key indicator for assessing the effect of karst carbon sinks.This paper reviewed the CO_(2)partial pressure(pCO_(2))and its diffusion flux(FCO_(2))in karst surface aquatic ecosystems,mainly rivers,lakes,and reservoirs,and their influencing factors summarized the methods for monitoring CO_(2)emissions in karst aquatic ecosystems and discussed their adaptation conditions in karst areas.The pCO_(2)and FCO_(2)decreased in the order of rivers>reservoirs>lakes,and the values in karst lakes were eventually significantly lower than those in global lakes.The pCO_(2)and FCO_(2)of karst aquatic ecosystems had patterns of variation with diurnal,seasonal,water depth and hydrological cycles,and spatial and temporal hetero-geneity.The sources of CO_(2)in karst waters are influenced by both internal and external sources,and the key spatial and temporal factors affecting the CO_(2)emissions from karst rivers,lakes,and reservoirs were determined in terms of physicochemical indicators,biological factors,and bio-genic elements;additionally,the process of human activity interference on CO_(2)emissions was discussed.Finally,a conceptual model illustrating the impacts of urban devel-opment,agriculture,mining,and dam construction on the CO_(2)emissions at the karst surface aquatic ecosystem is presented.Meanwhile,based on the disadvantages existing in current research,we proposed several important research fields related to CO_(2)emissions from karst surface aquatic ecosystems.展开更多
Reactions between CH_4 and CO_2 under the action of continuous microwave discharge at atmospheric pressure were studied in a special homemade reactor. The main products were CO and H2, while acetylene and ethylene wer...Reactions between CH_4 and CO_2 under the action of continuous microwave discharge at atmospheric pressure were studied in a special homemade reactor. The main products were CO and H2, while acetylene and ethylene were also found in the products. Experimental results show that conversions of CH4 and CO2 could be higher than 90% without the presence of any catalyst. Effects of CO2/CH4 molar ratio and total flow rate of the feed gas on the reaction were also investigated.展开更多
The effect of COpartial pressure was evaluated during the COchemisorption in penta lithium aluminate(LiAlO), using different COand Opartial pressures in the presence or absence of alkaline carbonates. Results showed...The effect of COpartial pressure was evaluated during the COchemisorption in penta lithium aluminate(LiAlO), using different COand Opartial pressures in the presence or absence of alkaline carbonates. Results showed that using low PO(0.1) did not affect the kinetic and final COchemisorption process. Moreover, small additions of oxygen(PO= 0.05) into the mixture flue gas, seemed to increase the COchemisorption. Additionally, the presence of alkaline carbonates modified the COcapture temperature range. COchemisorption kinetic parameters were determined assuming a double exponential model where direct COchemisorption and COchemisorption controlled by diffusion processes are considered.Finally, ionic diffusion was analyzed by ionic conduction analysis, where all the gravimetric and ionic measurements were in good agreement showing different diffusion processes depending on temperature.Finally, the oxygen and alkaline carbonate additions have positive effects during the COchemisorption process in LiAlO, and a possible reaction mechanism is presented.展开更多
Copper nitride thin films were deposited on glass substrates by reactive direct current (DC) magnetron sputtering at various N2-gas partial pressures and room temperature. Xray diffraction measurements showed that t...Copper nitride thin films were deposited on glass substrates by reactive direct current (DC) magnetron sputtering at various N2-gas partial pressures and room temperature. Xray diffraction measurements showed that the films were composed of Cu3N crystallites and exhibited a preferential orientation of the [111] direction at a low nitrogen gas (N2) partial pressure. The film growth preferred the [111] and the [100] direction at a high N2 partial pressure. Such preferential film growth is interpreted as being due to the variation in the Copper (Cu) nitrification rate with the N2 pressure. The N2 partial pressure affects not only the crystal structure of the film but also the deposition rate and the resistivity of the Cu3N film. In our experiment, the deposition rate of Cu3N films was 18 nm/min to 30 nm/min and increased with the N2 partial pressure. The resistivity of the Cu3N films increased sharply with the increasing N2 partial pressure. At a low N2 partial pressure, the Cu3N films showed a metallic conduction mechanism through the Cu path, and at a high N2 partial pressure, the conductivity of the Cu3N films showed a semiconductor conduction mechanism.展开更多
The 3rd Chinese National Arctic Research Expedition (CHINARE-Arctic III) was carried out from July to September in 2008. The partial pressure of CO2 (pCO2) in the atmosphere and in surface seawater were determined...The 3rd Chinese National Arctic Research Expedition (CHINARE-Arctic III) was carried out from July to September in 2008. The partial pressure of CO2 (pCO2) in the atmosphere and in surface seawater were determined in the Bering Sea during luly 11-27, 2008, and a large number of seawater samples were taken for total alkalinity (TA) and total dissolved inorganic carbon (DIC) analysis. The distributions of CO2 parameters in the Bering Sea and their controlling factors were discussed. The pCO2 values in surface seawater presented a drastic variation from 148 to 563 laatm (1 μatm = 1.013 25× 10-1Pa). The lowest pCOz values were observed near the Bering Sea shelf break while the highest pCO2 existed at the western Bering Strait. The Bering Sea generally acts as a net sink for atmospheric CO2 in summer. The air-sea CO2 fluxes in the Bering Sea shelf, slope, and basin were estimated at -9.4, -16.3, and -5.1 mmol/(m2.d), respectively. The annual uptake of CO2 was about 34 Tg C in the Bering Sea.展开更多
The third Chinese National Arctic Research Expedition (CHINARE) was conducted in the summer of 2008. During the survey, the surface seawater partial pressure of CO2 (pCO2) was measured, and sea water samples were ...The third Chinese National Arctic Research Expedition (CHINARE) was conducted in the summer of 2008. During the survey, the surface seawater partial pressure of CO2 (pCO2) was measured, and sea water samples were collected for CO2 measurement in the Canada Basin. The distribution of pCO2 in the Canada Basin was determined, the influencing factors were addressed, and the air-sea CO2 flux in the Canada Basin was evaluated. The Canada Basin was divided into three regions: the ice-free zone (south of 77°N), the partially ice-covered zone (77°-80°N), and the heavily ice-covered zone (north of 80°N). In the ice-free zone, pCO2 was high (320 to 368 patm, 1 patm=0.101 325 Pa), primarily due to rapid equilibration with atmospheric CO2 over a short time. In the partially ice-covered zone, the surface pCOs was relatively low (250 to 270 patm) due to ice-edge blooms and icemelt water dilution. In the heavily ice-covered zone, the seawater pCO2 varied between 270 and 300 laatm due to biological COs removal, the transportation of low pCOs water northward, and heavy ice cover. The surface seawater pCO2 during the survey was undersaturated with respect to the atmosphere in the Canada Basin, and it was a net sink for atmospheric CO2. The summertime net CO2 uptake of the ice-free zone, the partially ice-covered zone and the heavily ice-covered zone was (4.14±1.08), (1.79±0.19), and (0.57±0.03) Tg/a (calculated by carbon, 1 Tg=10^12 g), respectively. Overall, the net COs sink of the Canada Basin in the summer of 2008 was (6.5+1.3) Tg/a, which accounted for 4%-10% of the Arctic Ocean COs sink.展开更多
Novel dual-ionic imidazolium salts are shown to display excellent catalytic activity for cycloaddition of carbon dioxide and epoxides under room temperature and atmospheric pressure(0.1 MPa)without any solvent and co-...Novel dual-ionic imidazolium salts are shown to display excellent catalytic activity for cycloaddition of carbon dioxide and epoxides under room temperature and atmospheric pressure(0.1 MPa)without any solvent and co-catalyst leading to 96.1%product yield.It can be reused five times to keep the product yield over 90%.These intriguing results are attributed to a new reaction mechanism,which is supported by theoretical calculations along with the measurements of ^(13)C NMR spectrum and Fourier transform infrared spectroscopy(FT-IR).The excellent catalytic activity can be traced to a CO_(2)-philic group along with an electrophilic hydrogen atom.Our work shows that incorporation of CO_(2)-philic group is an feasible pathway to develop the new efficient ionic liquids.展开更多
The distributions and relationships of O_2, CO_2, and dimethylsulfide (DMS) in the Changjiang (Yangtze) Estuary and its adjacent waters were investigated in June 2014. In surface water, mean O_2 saturation level, part...The distributions and relationships of O_2, CO_2, and dimethylsulfide (DMS) in the Changjiang (Yangtze) Estuary and its adjacent waters were investigated in June 2014. In surface water, mean O_2 saturation level, partial pressure of CO_2 (pCO_2), and DMS concentrations (and ranges) were 110% (89%–167%), 374μatm (91–640 μatm), and 8.53 nmol L^(-1) (1.10–27.50 nmol L^(-1)), respectively. The sea-to-air fluxes (and ranges) of DMS and CO_2 were 8.24 μmol m^(-2)d^(-1) (0.26–62.77 μmol m^(-2)d^(-1)), and -4.7 mmol m^(-2)d^(-1) (-110.8-31.7 mmol m^(-2)d^(-1)), respectively. Dissolved O_2 was oversaturated, DMS concentrations were relatively high, and this region served as a sink of atmospheric CO_2. The pCO_2 was significantly and negatively correlated with the O_2 saturation level, while the DMS concentration showed different positive relationships with the O_2 saturation level in different water masses. In vertical profiles, a hypoxic zone existed below 20 m at a longitude of 123?E. The stratification of temperature and salinity caused by the Taiwan Warm Current suppressed seawater exchange between upper and lower layers, resulting in the formation of a hypoxic zone. Oxidative de-composition of organic detritus carried by the Changjiang River Diluted Water (CRDW) consumed abundant O_2 and produced additional CO_2. The DMS concentrations decreased because of low phytoplankton biomass in the hypoxic zone. Strong correlations ap-peared between the O_2 saturation level, pCO_2 and DMS concentrations in vertical profiles. Our results strongly suggested that CRDW played an important role in the distributions and relationships of O_2, CO_2, and DMS.展开更多
Tight conglomerate reservoirs are featured with extremely low permeability,strong heterogeneity and poor water injectivity.CO_(2) huff-n-puff has been considered a promising candidate to enhance oil recovery in tight ...Tight conglomerate reservoirs are featured with extremely low permeability,strong heterogeneity and poor water injectivity.CO_(2) huff-n-puff has been considered a promising candidate to enhance oil recovery in tight reservoirs,owing to its advantages in reducing oil viscosity,improving mobility ratio,quickly replenishing formation pressure,and potentially achieving a miscible state.However,reliable inhouse laboratory evaluation of CO_(2) huff-n-puff in natural conglomerate cores is challenging due to the inherent high formation pressure.In this study,we put forward an equivalent method based on the similarity of the miscibility index and Grashof number to acquire a lab-controllable pressure that features the flow characteristics of CO_(2) injection in a tight conglomerate reservoir.The impacts of depletion degree,pore volume injection of CO_(2) and soaking time on ultimate oil recovery in tight cores from the Mahu conglomerate reservoir were successfully tested at an equivalent pressure.Our results showed that oil recovery decreased with increased depletion degree while exhibiting a non-monotonic tendency(first increased and then decreased)with increased CO_(2) injection volume and soaking time.The lower oil recoveries under excess CO_(2) injection and soaking time were attributed to limited CO_(2) dissolution and asphaltene precipitation.This work guides secure and reliable laboratory design of CO_(2) huff-n-puff in tight reservoirs with high formation pressure.展开更多
An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly desi...An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly designed to pre-separate and capture 74.57% CO_(2) with a CO_(2) purity of 98.35% from UCG syngas(CH_(4)/CO/CO_(2)/H_(2)/N_(2)= 30.77%/6.15%/44.10%/18.46%/0.52%, mole fraction, from Shaar Lake Mine Field,Xinjiang Province, China) with a feed pressure of 3.5 MPa. Subsequently, the Rectisol process is constructed to furtherly remove and capture the residual CO_(2)remained in light product gas from the VPSA process using cryogenic methanol(233.15 K, 100%(mass)) as absorbent. A final purified gas with CO_(2) concentration lower than 3% and a regenerated CO_(2) product with CO_(2) purity higher than 95% were achieved by using the Rectisol process. Comparisons indicate that the energy consumption is deceased from 2.143 MJ·kg^(-1) of the single Rectisol process to 1.008 MJ·kg^(-1) of the integrated VPSA & Rectisol process, which demonstrated that the deployed VPSA was an energy conservation process for CO_(2) capture from UCG syngas. Additionally, the high-value gas(e.g., CH_(4)) loss can be decreased and the effects of key operating parameters on the process performances were detailed.展开更多
Fourty-eight patients (ASA physical status Ⅰ - Ⅱ) undergoing selected thoracotomy and pulmonectomy were studied. They were divided into two groups according to different respiratory modes, two-lung ventilation (TLV)...Fourty-eight patients (ASA physical status Ⅰ - Ⅱ) undergoing selected thoracotomy and pulmonectomy were studied. They were divided into two groups according to different respiratory modes, two-lung ventilation (TLV) and onelung ventilation (OLV) or TLV and OLV with a Bain cyclic system for CPAP on the side of operated lung. PETCO2 and PaCO2 were measured after 30 min TLV,30 min and 60 min OLV, and repeated TLV (R-TLV) 30 min after pulmonectomy, to evaluate the difference between PETCO2 and PaCO2 in OLV and to observethe effect of abating hypoxemia and discharge of CO2 in OLV with Bain system.Our results showed that the PaCO2 and PETCO2 in different test groups were normal though the measured values in OLV were slightly higher than that in TLV (P<0. 05) , and then they were recovered after R-TLV (P>0. 05). There was nosignificant difference between group 1. and 2. in OLV (P>0. 05). There was aclose correlation between PETCO2 and PaCO2 (P<0. 05). The differences of the calculated P(a-ET)CO2 and radio of PETCO2/PaCO2 in different ventilation modes were not significant. Hypoxemia in OLV was corrected by Bain system, but the discharge of CO2 was not affected. The results showed that measurement of PET CO2 as a non-invasive procedure can be commonly used to monitor OLV.展开更多
The performance of engineered wood products is highly associated with proper bonding and an efficient cutting method.This paper investigates the influence of CO_(2) laser cutting on the wetting properties,the modified ch...The performance of engineered wood products is highly associated with proper bonding and an efficient cutting method.This paper investigates the influence of CO_(2) laser cutting on the wetting properties,the modified che-mical component of the laser-cut surface,and the strength and adhesive penetration near the bondline.Beech-wood is cut by the laser with varying processing parameters,cutting speeds,gas pressures,and focal point positions.The laser-cut samples were divided into two groups,sanded and non-sanded samples.Polyvinyl acetate adhesive(PVAc)was used to bond the groups of laser-cut samples.After assembly with cold pressing,the tensile shear test was carried out.Numerical modelling was carried out to determine the partial elongation and shear strain of the glue line.Based on this,the shear modulus and linear elasticity of the glue line were estimated.Scan-ning electron microscopy was used to assess the adhesive penetration into the porosity structure of the laser-cut samples,and the depth of the heat-affected zone.The laser-cut surface was analysed by Fourier transform infrared spectroscopy.The wetting properties of the laser-cut surface were investigated by using a contact angle goni-ometer.The numerical model of the strain-stress curve confirmed the experimental model.The highest modulus of the linear elasticity of the glue in the numerical calculation belongs to the joint containing laser-cut samples at a gas pressure of 21(bar).The penetration depth of PVAc adhesive into the porosity structure of the laser-cut sam-ples was similar to that of sawn samples.The deepest heat-affected zone in the laser-cut samples was 150µm.A PVAc drop disappeared immediately on the laser-cut surface without sanding,but gradually on the sanded surface.In contrast,the drop on the sawn surface remained with an angle of 32°–48°.The degradation of hemi-cellulose and lignin was proven by the lower intensity of the C=O and C-O Bonds,compared to the sawn surface.展开更多
基金the financial support from the National Natural Science Foundation of China(Nos.52034011 and 52204328)the Science and Technology Innovation Program of Hunan Province(2023RC305)the Changsha Municipal Natural Science Foundation(kq2202085)。
文摘The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poor crystal structure stability of Ni-rich cathode.Several coating strategies are previously employed to enhance the stability of the cathodic interface and crystal structure for Ni-rich cathode.However,these methods can hardly achieve simplicity and high efficiency simultaneously.In this work,polyacrylic acid(PAA)replaced traditional PVDF as a binder for cathode,which can achieve a uniform PAA-Li(LixPAA(0<x≤1))coating layer on the surface of single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)due to H^(+)/Li^(+)exchange reaction during the initial charging-discharging process.The formation of PAA-Li coating layer on cathode can promote interfacial Li^(+)transport and enhance the stability of the cathodic interface.Furthermore,the partially-protonated surface of SC-NCM83 casued by H^(+)/Li^(+)exchange reaction can restrict Ni ions transport to enhance the crystal structure stability.The proposed SC-NCM83-PAA exhibits superior cycling performance with a retention of 92%compared with that(57.3%)of SC-NCM83-polyvinylidene difluoride(PVDF)after 200 cycles.This work provides a practical strategy to construct high-performance cathodes for ASSBs.
基金We acknowledge the funding support from the Research Fund for the special projects in key fields of Guangdong Universities(Grant No.2021ZDZX4074)the Japan Society for the Promotion of Science(Grant No.JP-20K21163)Scientific Research Fund of Hainan University(Approval No.KYQD(ZR)-22122).
文摘To ensure a safe and stable CO_(2)storage,pressure responses at an observation well are expected to be an important and useful field monitoring item to estimate the CO_(2)storage behaviors and the aquifer parameters during and after injecting CO_(2),because it can detect whether the injected CO_(2)leaks to the ground surface or the bottom of the sea.In this study,pressure responses were simulated to present design factors such as well location and pressure transmitter of the observation well.Numerical simulations on the pressure response and the time-delay from pressure build-up after CO_(2)injection were conducted by considering aquifer parameters and distance from the CO_(2)injection well to an observation well.The measurement resolution of a pressure transmitter installed in the observation well was presented based on numerical simulation results of the pressure response against pressure build-up at the injection well and CO_(2)plume front propagations.Furthermore,the pressure response at an observation well was estimated by comparing the numerical simulation results with the curve of CO_(2)saturation and relative permeability.It was also suggested that the analytical solution can be used for the analysis of the pressure response tendency using pressure build-up and dimensionless parameters of hydraulic diffusivity.Thus,a criterion was established for selecting a pressure transducer installed at an observation well to monitor the pressure responses with sufficient accuracy and resolution,considering the distance from the injection well and the pressure build-up at the injection well,for future carbon capture and storage(CCS)projects.
基金financially supported by the National Key R&D Program of China(Grant No.2020YFA0711802)the Wuhan Science and Technology Bureau of China(Grant No.2023020201010081)the National Nature Science Foundation of China(Grant No.U22A20239).
文摘The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO_(2)design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak distribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO_(2)weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO_(2)(PPVCO_(2))is significantly smaller than that caused by blasting(PPVexplosive).The ratio of PPVexplosive to PPVCO_(2)is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO_(2)is relatively simple with a narrow frequency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control.
基金funded by the American University in Cairo research grants(Project number SSE-MENG-M.M.-FY18-FY19-FY20-RG(1-18)–2017-Nov-11-17-52-02).
文摘Biogas is a renewable and clean energy source that plays an important role in the current environment of lowcarbon transition.If high-content CO_(2) in biogas can be separated,transformed,and utilized,it not only realizes high-value utilization of biogas but also promotes carbon reduction in the biogas field.To improve the combustion stability of biogas,an inhomogeneous,partially premixed stratified(IPPS)combustion model was adopted in this study.The thermal flame structure and stability were investigated for a wide range of mixture inhomogeneities,turbulence levels,CO_(2) concentrations,air-to-fuel velocity ratios,and combustion energies in a concentric flow slot burner(CFSB).A fine-wire thermocouple is used to resolve the thermal flame structure.The flame size was reduced by increasing the CO_(2) concentration and the flames became lighter blue.The flame temperature also decreased with increase in CO_(2) concentration.Flame stability was reduced by increasing the CO_(2) concentration.However,at a certain level of mixture inhomogeneity,the concentration of CO_(2) in the IPPS mode did not affect the stability.Accordingly,the IPPS mode of combustion should be suitable for the combustion and stabilization of biogas.This should support the design of highly stabilized biogas turbulent flames independent of CO_(2) concentration.The data show that the lower stability conditions are partially due to the change in fuel combustion energy,which is characterized by the Wobbe index(WI).In addition,at a certain level of mixture inhomogeneity,the effect of the WI on flame stability becomes dominant.
基金financially supported by National Key Research and Development Program of China (Nos. 2018YFC1106601 and 2016YFC1100601)Liaoning Revitalization Talents Program (No. XLYC1807069)+1 种基金National Natural Science Foundation of China (Nos. 51631009 and 31870954)Key Projects for Foreign Cooperation of Bureau of International Cooperation Chinese Academy of Sciences (No. 174321KYSB20180006)
文摘Foreign body reactions to the wear debris and corrosion products from the implants,and bacterial infections are the main factors leading to the implant failures.In order to resolve these problems,the antibacterial TiN/Cu nanocomposite coatings with various N_(2) partial pressures were deposited on 304 stainless steels(SS)using an arc ion plating(AIP)system,named TiN/Cu-x(x=0.5,1.0,1.5 Pa).The results of X-ray diffraction analysis,energy-dispersive X-ray spectroscopy,and scanning electron microscopy showed that the N_(2) partial pressures determined the Cu contents,surface defects,and crystallite sizes of TiN/Cu nanocomposite coatings,which further influenced the comprehensive abilities.And the hardness and wear resistances of TiN/Cu coatings were enhanced with increase of the crystallite sizes.Under the co-actions of surface defects,crystallite sizes,and Cu content,TiN/Cu-1.0 and TiN/Cu-1.5 coatings possessed excellent corrosion resistance.Besides,the biological tests proved that all the TiN/Cu coatings showed no cytotoxicity with strong antibacterial ability.Among them,TiN/Cu-1.5 coating significantly promoted the cell proliferation,which is expected to be a novel antibacterial,corrosion-resistant,and wear-resistant coating on the surfaces of medical implants.
基金supported by Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.SKLGME021010)funded by the National Natural Science Foundation of China(Grant No.41702251 and 42141010)the MOE Key Laboratory of Groundwater Circulation and Environmental Evolution。
文摘Gas breakthrough pressure is a key parameter to evaluate the sealing capacity of caprock,and it also plays important roles in safety and capacity of CO_(2)geological storage.Based on the published experimental results,we present numerical simulations on CO_(2)breakthrough pressure in unsaturated low-permeability rock under 9 multiple P-T conditions(which can keep CO_(2)in gaseous,liquid and supercritical states)and thus,a numerical method which can be used to accurately predict CO_(2)breakthrough pressure on rock-core scale is proposed.The simulation results show that CO_(2)breakthrough pressure and breakthrough time are exponential correlated with P-T conditions.Meanwhile,pressure has stronger effects on experimental results than that of temperature.Moreover,we performed sensitivity studies on the pore distribution indexλ(0.6,0.7,0.8,and 0.9)in van Genuchten-Muale model.Results show that with the increase ofλ,CO_(2)breakthrough pressure and breakthrough time both show decreasing trends.In other words,the larger the value ofλis,the better the permeability of the caprock is,and the worse the CO_(2)sealing capacity is.The numerical method established in this study can provide an important reference for the prediction of gas breakthrough pressure on rock-core scale and for related numerical studies.
基金supported by the National Natural Science Foundation of China(42163003)the Project of Talent Base in Guizhou Province(No.RCJD2018-21).
文摘Carbon dioxide(CO_(2))emissions from aquatic ecosystems are an important component of the karst carbon cycle process and also a key indicator for assessing the effect of karst carbon sinks.This paper reviewed the CO_(2)partial pressure(pCO_(2))and its diffusion flux(FCO_(2))in karst surface aquatic ecosystems,mainly rivers,lakes,and reservoirs,and their influencing factors summarized the methods for monitoring CO_(2)emissions in karst aquatic ecosystems and discussed their adaptation conditions in karst areas.The pCO_(2)and FCO_(2)decreased in the order of rivers>reservoirs>lakes,and the values in karst lakes were eventually significantly lower than those in global lakes.The pCO_(2)and FCO_(2)of karst aquatic ecosystems had patterns of variation with diurnal,seasonal,water depth and hydrological cycles,and spatial and temporal hetero-geneity.The sources of CO_(2)in karst waters are influenced by both internal and external sources,and the key spatial and temporal factors affecting the CO_(2)emissions from karst rivers,lakes,and reservoirs were determined in terms of physicochemical indicators,biological factors,and bio-genic elements;additionally,the process of human activity interference on CO_(2)emissions was discussed.Finally,a conceptual model illustrating the impacts of urban devel-opment,agriculture,mining,and dam construction on the CO_(2)emissions at the karst surface aquatic ecosystem is presented.Meanwhile,based on the disadvantages existing in current research,we proposed several important research fields related to CO_(2)emissions from karst surface aquatic ecosystems.
文摘Reactions between CH_4 and CO_2 under the action of continuous microwave discharge at atmospheric pressure were studied in a special homemade reactor. The main products were CO and H2, while acetylene and ethylene were also found in the products. Experimental results show that conversions of CH4 and CO2 could be higher than 90% without the presence of any catalyst. Effects of CO2/CH4 molar ratio and total flow rate of the feed gas on the reaction were also investigated.
基金financially supported by the projects PAPIITUNAM(IN-101916)SENER-CONACYT(251801)+1 种基金CONACYTDGAPA-UNAM for financial support
文摘The effect of COpartial pressure was evaluated during the COchemisorption in penta lithium aluminate(LiAlO), using different COand Opartial pressures in the presence or absence of alkaline carbonates. Results showed that using low PO(0.1) did not affect the kinetic and final COchemisorption process. Moreover, small additions of oxygen(PO= 0.05) into the mixture flue gas, seemed to increase the COchemisorption. Additionally, the presence of alkaline carbonates modified the COcapture temperature range. COchemisorption kinetic parameters were determined assuming a double exponential model where direct COchemisorption and COchemisorption controlled by diffusion processes are considered.Finally, ionic diffusion was analyzed by ionic conduction analysis, where all the gravimetric and ionic measurements were in good agreement showing different diffusion processes depending on temperature.Finally, the oxygen and alkaline carbonate additions have positive effects during the COchemisorption process in LiAlO, and a possible reaction mechanism is presented.
基金the Key Programme of the Education Department of Hubei Province,China(2003A001,D200529002)
文摘Copper nitride thin films were deposited on glass substrates by reactive direct current (DC) magnetron sputtering at various N2-gas partial pressures and room temperature. Xray diffraction measurements showed that the films were composed of Cu3N crystallites and exhibited a preferential orientation of the [111] direction at a low nitrogen gas (N2) partial pressure. The film growth preferred the [111] and the [100] direction at a high N2 partial pressure. Such preferential film growth is interpreted as being due to the variation in the Copper (Cu) nitrification rate with the N2 pressure. The N2 partial pressure affects not only the crystal structure of the film but also the deposition rate and the resistivity of the Cu3N film. In our experiment, the deposition rate of Cu3N films was 18 nm/min to 30 nm/min and increased with the N2 partial pressure. The resistivity of the Cu3N films increased sharply with the increasing N2 partial pressure. At a low N2 partial pressure, the Cu3N films showed a metallic conduction mechanism through the Cu path, and at a high N2 partial pressure, the conductivity of the Cu3N films showed a semiconductor conduction mechanism.
基金The National Natural Science Foundation of China (NSFC) under contract Nos 40976116 and 40531007the Fujian Science Foundation under contract No.2009J06025+3 种基金the SOA Youth Foundation Grant under contract No.2012538the Chinese Projects for Investigations and Assessments of the Arctic and Antarctic under contract Nos CHINARE2012: 01-04, 02-01, 03-04, 04-03, 04-04, and CHINARE2013: 01-04, 02-01, 03-04, 04-03, 04-04the Chinese International Cooperation Projects under contract Nos IC201114, IC201201, IC201308, and HC120601the Scientific Research Foundation of Third Institute of Oceanography, SOA under contract Nos 2012006 and 2014006
文摘The 3rd Chinese National Arctic Research Expedition (CHINARE-Arctic III) was carried out from July to September in 2008. The partial pressure of CO2 (pCO2) in the atmosphere and in surface seawater were determined in the Bering Sea during luly 11-27, 2008, and a large number of seawater samples were taken for total alkalinity (TA) and total dissolved inorganic carbon (DIC) analysis. The distributions of CO2 parameters in the Bering Sea and their controlling factors were discussed. The pCO2 values in surface seawater presented a drastic variation from 148 to 563 laatm (1 μatm = 1.013 25× 10-1Pa). The lowest pCOz values were observed near the Bering Sea shelf break while the highest pCO2 existed at the western Bering Strait. The Bering Sea generally acts as a net sink for atmospheric CO2 in summer. The air-sea CO2 fluxes in the Bering Sea shelf, slope, and basin were estimated at -9.4, -16.3, and -5.1 mmol/(m2.d), respectively. The annual uptake of CO2 was about 34 Tg C in the Bering Sea.
基金The National Natural Science Foundation of China(NSFC) under contract Nos 41476173 and 41406221the Chinese Projects for Investigations and Assessments of the Arctic and Ant Arctic under contract Nos CHINARE2012-04-04 and 2012-04-03+1 种基金the Fujian Science and Technology Innovation Leader Project 2016the Scientific Research Foundation of Third Institute of Oceanography,SOA under contract No.2014006
文摘The third Chinese National Arctic Research Expedition (CHINARE) was conducted in the summer of 2008. During the survey, the surface seawater partial pressure of CO2 (pCO2) was measured, and sea water samples were collected for CO2 measurement in the Canada Basin. The distribution of pCO2 in the Canada Basin was determined, the influencing factors were addressed, and the air-sea CO2 flux in the Canada Basin was evaluated. The Canada Basin was divided into three regions: the ice-free zone (south of 77°N), the partially ice-covered zone (77°-80°N), and the heavily ice-covered zone (north of 80°N). In the ice-free zone, pCO2 was high (320 to 368 patm, 1 patm=0.101 325 Pa), primarily due to rapid equilibration with atmospheric CO2 over a short time. In the partially ice-covered zone, the surface pCOs was relatively low (250 to 270 patm) due to ice-edge blooms and icemelt water dilution. In the heavily ice-covered zone, the seawater pCO2 varied between 270 and 300 laatm due to biological COs removal, the transportation of low pCOs water northward, and heavy ice cover. The surface seawater pCO2 during the survey was undersaturated with respect to the atmosphere in the Canada Basin, and it was a net sink for atmospheric CO2. The summertime net CO2 uptake of the ice-free zone, the partially ice-covered zone and the heavily ice-covered zone was (4.14±1.08), (1.79±0.19), and (0.57±0.03) Tg/a (calculated by carbon, 1 Tg=10^12 g), respectively. Overall, the net COs sink of the Canada Basin in the summer of 2008 was (6.5+1.3) Tg/a, which accounted for 4%-10% of the Arctic Ocean COs sink.
基金supported by the National Natural Science Foundation of China(21975064)Program of Henan Center for Outstanding Overseas Scientists(GZS2020011)+1 种基金Henan University's first-class discipline science and technology research project(2018YLTD07,2018YLZDYJ11,2019YLZDYJ09)the Excellent Foreign Experts Project of Henan University。
文摘Novel dual-ionic imidazolium salts are shown to display excellent catalytic activity for cycloaddition of carbon dioxide and epoxides under room temperature and atmospheric pressure(0.1 MPa)without any solvent and co-catalyst leading to 96.1%product yield.It can be reused five times to keep the product yield over 90%.These intriguing results are attributed to a new reaction mechanism,which is supported by theoretical calculations along with the measurements of ^(13)C NMR spectrum and Fourier transform infrared spectroscopy(FT-IR).The excellent catalytic activity can be traced to a CO_(2)-philic group along with an electrophilic hydrogen atom.Our work shows that incorporation of CO_(2)-philic group is an feasible pathway to develop the new efficient ionic liquids.
基金financially supported by the National Key Research and Development Program of China (No.2016YFA06 01301)the National Natural Science Foundation of China (Nos.41176062,41676065)the Fundamental Research Funds for the Central Universities (No.201564015)
文摘The distributions and relationships of O_2, CO_2, and dimethylsulfide (DMS) in the Changjiang (Yangtze) Estuary and its adjacent waters were investigated in June 2014. In surface water, mean O_2 saturation level, partial pressure of CO_2 (pCO_2), and DMS concentrations (and ranges) were 110% (89%–167%), 374μatm (91–640 μatm), and 8.53 nmol L^(-1) (1.10–27.50 nmol L^(-1)), respectively. The sea-to-air fluxes (and ranges) of DMS and CO_2 were 8.24 μmol m^(-2)d^(-1) (0.26–62.77 μmol m^(-2)d^(-1)), and -4.7 mmol m^(-2)d^(-1) (-110.8-31.7 mmol m^(-2)d^(-1)), respectively. Dissolved O_2 was oversaturated, DMS concentrations were relatively high, and this region served as a sink of atmospheric CO_2. The pCO_2 was significantly and negatively correlated with the O_2 saturation level, while the DMS concentration showed different positive relationships with the O_2 saturation level in different water masses. In vertical profiles, a hypoxic zone existed below 20 m at a longitude of 123?E. The stratification of temperature and salinity caused by the Taiwan Warm Current suppressed seawater exchange between upper and lower layers, resulting in the formation of a hypoxic zone. Oxidative de-composition of organic detritus carried by the Changjiang River Diluted Water (CRDW) consumed abundant O_2 and produced additional CO_2. The DMS concentrations decreased because of low phytoplankton biomass in the hypoxic zone. Strong correlations ap-peared between the O_2 saturation level, pCO_2 and DMS concentrations in vertical profiles. Our results strongly suggested that CRDW played an important role in the distributions and relationships of O_2, CO_2, and DMS.
基金This study is financially supported by CNPC Innovation Foundation(2020D-5007-0214)Major Strategic Project of CNPC(ZLZX2020-01-04)Beijing Municipal Excellent Talent Training Funds Youth Advanced Individual Project(2018000020124G163)。
文摘Tight conglomerate reservoirs are featured with extremely low permeability,strong heterogeneity and poor water injectivity.CO_(2) huff-n-puff has been considered a promising candidate to enhance oil recovery in tight reservoirs,owing to its advantages in reducing oil viscosity,improving mobility ratio,quickly replenishing formation pressure,and potentially achieving a miscible state.However,reliable inhouse laboratory evaluation of CO_(2) huff-n-puff in natural conglomerate cores is challenging due to the inherent high formation pressure.In this study,we put forward an equivalent method based on the similarity of the miscibility index and Grashof number to acquire a lab-controllable pressure that features the flow characteristics of CO_(2) injection in a tight conglomerate reservoir.The impacts of depletion degree,pore volume injection of CO_(2) and soaking time on ultimate oil recovery in tight cores from the Mahu conglomerate reservoir were successfully tested at an equivalent pressure.Our results showed that oil recovery decreased with increased depletion degree while exhibiting a non-monotonic tendency(first increased and then decreased)with increased CO_(2) injection volume and soaking time.The lower oil recoveries under excess CO_(2) injection and soaking time were attributed to limited CO_(2) dissolution and asphaltene precipitation.This work guides secure and reliable laboratory design of CO_(2) huff-n-puff in tight reservoirs with high formation pressure.
基金financially supported by the Renewable Energy and Hydrogen Projects in National Key Research & Development Program of China (2019YFB1505000)。
文摘An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly designed to pre-separate and capture 74.57% CO_(2) with a CO_(2) purity of 98.35% from UCG syngas(CH_(4)/CO/CO_(2)/H_(2)/N_(2)= 30.77%/6.15%/44.10%/18.46%/0.52%, mole fraction, from Shaar Lake Mine Field,Xinjiang Province, China) with a feed pressure of 3.5 MPa. Subsequently, the Rectisol process is constructed to furtherly remove and capture the residual CO_(2)remained in light product gas from the VPSA process using cryogenic methanol(233.15 K, 100%(mass)) as absorbent. A final purified gas with CO_(2) concentration lower than 3% and a regenerated CO_(2) product with CO_(2) purity higher than 95% were achieved by using the Rectisol process. Comparisons indicate that the energy consumption is deceased from 2.143 MJ·kg^(-1) of the single Rectisol process to 1.008 MJ·kg^(-1) of the integrated VPSA & Rectisol process, which demonstrated that the deployed VPSA was an energy conservation process for CO_(2) capture from UCG syngas. Additionally, the high-value gas(e.g., CH_(4)) loss can be decreased and the effects of key operating parameters on the process performances were detailed.
文摘Fourty-eight patients (ASA physical status Ⅰ - Ⅱ) undergoing selected thoracotomy and pulmonectomy were studied. They were divided into two groups according to different respiratory modes, two-lung ventilation (TLV) and onelung ventilation (OLV) or TLV and OLV with a Bain cyclic system for CPAP on the side of operated lung. PETCO2 and PaCO2 were measured after 30 min TLV,30 min and 60 min OLV, and repeated TLV (R-TLV) 30 min after pulmonectomy, to evaluate the difference between PETCO2 and PaCO2 in OLV and to observethe effect of abating hypoxemia and discharge of CO2 in OLV with Bain system.Our results showed that the PaCO2 and PETCO2 in different test groups were normal though the measured values in OLV were slightly higher than that in TLV (P<0. 05) , and then they were recovered after R-TLV (P>0. 05). There was nosignificant difference between group 1. and 2. in OLV (P>0. 05). There was aclose correlation between PETCO2 and PaCO2 (P<0. 05). The differences of the calculated P(a-ET)CO2 and radio of PETCO2/PaCO2 in different ventilation modes were not significant. Hypoxemia in OLV was corrected by Bain system, but the discharge of CO2 was not affected. The results showed that measurement of PET CO2 as a non-invasive procedure can be commonly used to monitor OLV.
文摘The performance of engineered wood products is highly associated with proper bonding and an efficient cutting method.This paper investigates the influence of CO_(2) laser cutting on the wetting properties,the modified che-mical component of the laser-cut surface,and the strength and adhesive penetration near the bondline.Beech-wood is cut by the laser with varying processing parameters,cutting speeds,gas pressures,and focal point positions.The laser-cut samples were divided into two groups,sanded and non-sanded samples.Polyvinyl acetate adhesive(PVAc)was used to bond the groups of laser-cut samples.After assembly with cold pressing,the tensile shear test was carried out.Numerical modelling was carried out to determine the partial elongation and shear strain of the glue line.Based on this,the shear modulus and linear elasticity of the glue line were estimated.Scan-ning electron microscopy was used to assess the adhesive penetration into the porosity structure of the laser-cut samples,and the depth of the heat-affected zone.The laser-cut surface was analysed by Fourier transform infrared spectroscopy.The wetting properties of the laser-cut surface were investigated by using a contact angle goni-ometer.The numerical model of the strain-stress curve confirmed the experimental model.The highest modulus of the linear elasticity of the glue in the numerical calculation belongs to the joint containing laser-cut samples at a gas pressure of 21(bar).The penetration depth of PVAc adhesive into the porosity structure of the laser-cut sam-ples was similar to that of sawn samples.The deepest heat-affected zone in the laser-cut samples was 150µm.A PVAc drop disappeared immediately on the laser-cut surface without sanding,but gradually on the sanded surface.In contrast,the drop on the sawn surface remained with an angle of 32°–48°.The degradation of hemi-cellulose and lignin was proven by the lower intensity of the C=O and C-O Bonds,compared to the sawn surface.