Let {Xni, 1 ≤ n,i 〈 ∞} be an an array of rowwise NA random variables and {an, n ≥ 1} a sequence of constants with 0 〈 an ↑∞ . The limiting behavior of maximum partial sums 1/an max 1≤k≤n|^k∑i=1 Xni| is inv...Let {Xni, 1 ≤ n,i 〈 ∞} be an an array of rowwise NA random variables and {an, n ≥ 1} a sequence of constants with 0 〈 an ↑∞ . The limiting behavior of maximum partial sums 1/an max 1≤k≤n|^k∑i=1 Xni| is investigated and some new results are obtained. The results extend and improve the corresponding theorems of rowwise independent random variable arrays by Hu and Taylor [1] and Hu and Chang [2].展开更多
In this paper, we obtain the moment conditions for the supermun of normed sums of ρ^--mixing random variables by using the Rosenthal-type inequality for Maximum partial sums of ρ^--mixing random variables. The resul...In this paper, we obtain the moment conditions for the supermun of normed sums of ρ^--mixing random variables by using the Rosenthal-type inequality for Maximum partial sums of ρ^--mixing random variables. The result obtained generalize the results of Chen(2008) and extend those to negatively associated sequences and ρ^--mixing random variables.展开更多
Let {Xn,n ≥ 1} be a sequence of identically distributed ρ^--mixing random variables and set Sn =∑i^n=1 Xi,n ≥ 1,the suffcient and necessary conditions for the existence of moments of supn≥1 |Sn/n^1/r|^p(0 〈 r...Let {Xn,n ≥ 1} be a sequence of identically distributed ρ^--mixing random variables and set Sn =∑i^n=1 Xi,n ≥ 1,the suffcient and necessary conditions for the existence of moments of supn≥1 |Sn/n^1/r|^p(0 〈 r 〈 2,p 〉 0) are given,which are the same as that in the independent case.展开更多
We show sharp bounds for probabilities of large deviations for sums of independent random variables satisfying Bernstein's condition. One such bound is very close to the tail of the standard Gaussian law in certai...We show sharp bounds for probabilities of large deviations for sums of independent random variables satisfying Bernstein's condition. One such bound is very close to the tail of the standard Gaussian law in certain case; other bounds improve the inequalities of Bennett and Hoeffding by adding missing factors in the spirit of Talagrand(1995). We also complete Talagrand's inequality by giving a lower bound of the same form, leading to an equality. As a consequence, we obtain large deviation expansions similar to those of Cram′er(1938),Bahadur-Rao(1960) and Sakhanenko(1991). We also show that our bound can be used to improve a recent inequality of Pinelis(2014).展开更多
Binary digit representation of partial sums for random variables has been investigated, and a good upper bound of moments of maximum partial sums for random variables has been reduced by using this representation. As ...Binary digit representation of partial sums for random variables has been investigated, and a good upper bound of moments of maximum partial sums for random variables has been reduced by using this representation. As an applications, stability and strong law of large numbers have been discussed. Many known classical results have been refined.展开更多
We show large deviation expansions for sums of independent and bounded from above random variables. Our moderate deviation expansions are similar to those of Cram′er(1938), Bahadur and Ranga Rao(1960), and Sakhanenko...We show large deviation expansions for sums of independent and bounded from above random variables. Our moderate deviation expansions are similar to those of Cram′er(1938), Bahadur and Ranga Rao(1960), and Sakhanenko(1991). In particular, our results extend Talagrand's inequality from bounded random variables to random variables having finite(2 + δ)-th moments, where δ∈(0, 1]. As a consequence,we obtain an improvement of Hoeffding's inequality. Applications to linear regression, self-normalized large deviations and t-statistic are also discussed.展开更多
Let(Xn)n≥1 be a sequence of independent identically distributed(i.i.d.) positive random variables with EX1 = μ,Var(X1) = σ2.In the present paper,we establish the moderate deviations principle for the products of pa...Let(Xn)n≥1 be a sequence of independent identically distributed(i.i.d.) positive random variables with EX1 = μ,Var(X1) = σ2.In the present paper,we establish the moderate deviations principle for the products of partial sums(πnk=1Sk/n!μn)1/(γbn√(2n))1where γ = σ/μ denotes the coefficient of variation and(bn) is the moderate deviations scale.展开更多
RECENTLY, a number of papers have been published concerning the asymptotic independentproperties of V X<sub>i</sub> and sum from 1 X<sub>i</sub> of weakly dependent stationary sequence {X<su...RECENTLY, a number of papers have been published concerning the asymptotic independentproperties of V X<sub>i</sub> and sum from 1 X<sub>i</sub> of weakly dependent stationary sequence {X<sub>i</sub>}.In this letter, let {X<sub>i</sub>} be a standard normal sequence of random variables with zero meanand unit variance and write r<sub>ij</sub>=cov(X<sub>i</sub>, X<sub>j</sub>).展开更多
文摘Let {Xni, 1 ≤ n,i 〈 ∞} be an an array of rowwise NA random variables and {an, n ≥ 1} a sequence of constants with 0 〈 an ↑∞ . The limiting behavior of maximum partial sums 1/an max 1≤k≤n|^k∑i=1 Xni| is investigated and some new results are obtained. The results extend and improve the corresponding theorems of rowwise independent random variable arrays by Hu and Taylor [1] and Hu and Chang [2].
基金Supported by the National Science Foundation of China(10661006)Supported by Innovation Project of Guangxi Graduate Education(2007105960812M18)
文摘In this paper, we obtain the moment conditions for the supermun of normed sums of ρ^--mixing random variables by using the Rosenthal-type inequality for Maximum partial sums of ρ^--mixing random variables. The result obtained generalize the results of Chen(2008) and extend those to negatively associated sequences and ρ^--mixing random variables.
基金Supported by the National Natural Science Foundation of China (60874004)
文摘Let {Xn,n ≥ 1} be a sequence of identically distributed ρ^--mixing random variables and set Sn =∑i^n=1 Xi,n ≥ 1,the suffcient and necessary conditions for the existence of moments of supn≥1 |Sn/n^1/r|^p(0 〈 r 〈 2,p 〉 0) are given,which are the same as that in the independent case.
基金supported by the Post-Graduate Study Abroad Program sponsored by China Scholarship CouncilNational Natural Science Foundation of China(Grant Nos.11171044 and11401590)
文摘We show sharp bounds for probabilities of large deviations for sums of independent random variables satisfying Bernstein's condition. One such bound is very close to the tail of the standard Gaussian law in certain case; other bounds improve the inequalities of Bennett and Hoeffding by adding missing factors in the spirit of Talagrand(1995). We also complete Talagrand's inequality by giving a lower bound of the same form, leading to an equality. As a consequence, we obtain large deviation expansions similar to those of Cram′er(1938),Bahadur-Rao(1960) and Sakhanenko(1991). We also show that our bound can be used to improve a recent inequality of Pinelis(2014).
文摘Binary digit representation of partial sums for random variables has been investigated, and a good upper bound of moments of maximum partial sums for random variables has been reduced by using this representation. As an applications, stability and strong law of large numbers have been discussed. Many known classical results have been refined.
基金supported by National Natural Science Foundation of China (Grant Nos. 11601375 and 11626250)
文摘We show large deviation expansions for sums of independent and bounded from above random variables. Our moderate deviation expansions are similar to those of Cram′er(1938), Bahadur and Ranga Rao(1960), and Sakhanenko(1991). In particular, our results extend Talagrand's inequality from bounded random variables to random variables having finite(2 + δ)-th moments, where δ∈(0, 1]. As a consequence,we obtain an improvement of Hoeffding's inequality. Applications to linear regression, self-normalized large deviations and t-statistic are also discussed.
基金supported by National Natural Science Foundation of China (Grant No.11001077)
文摘Let(Xn)n≥1 be a sequence of independent identically distributed(i.i.d.) positive random variables with EX1 = μ,Var(X1) = σ2.In the present paper,we establish the moderate deviations principle for the products of partial sums(πnk=1Sk/n!μn)1/(γbn√(2n))1where γ = σ/μ denotes the coefficient of variation and(bn) is the moderate deviations scale.
文摘RECENTLY, a number of papers have been published concerning the asymptotic independentproperties of V X<sub>i</sub> and sum from 1 X<sub>i</sub> of weakly dependent stationary sequence {X<sub>i</sub>}.In this letter, let {X<sub>i</sub>} be a standard normal sequence of random variables with zero meanand unit variance and write r<sub>ij</sub>=cov(X<sub>i</sub>, X<sub>j</sub>).