High-nitrogen nickel-free stainless steels were fabricated by the metal injection molding technique using high nitrogen alloying powders and a mixture of three polymers as binders.Mixtures of metal powders and binders...High-nitrogen nickel-free stainless steels were fabricated by the metal injection molding technique using high nitrogen alloying powders and a mixture of three polymers as binders.Mixtures of metal powders and binders with various proportions were also investigated, and an optimum powder loading capacity was determined as 64vol%.Intact injection molded compacts were successfully obtained by regulating the processing parameters.The debinding process for molded compacts was optimized with a combination of thermo-gravimetric analysis and differential scanning calorimetry analysis.An optimum relative density and nitrogen content of the specimens are obtained at 1360℃,which are 97.8%and 0.79wt%,respectively.展开更多
WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravi...WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC).The effect of sintering temperature on the microstructure and mechanical properties of nanocrystalline cemented carbide was studied by scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM)and mechanical property test.The results showed that the nano WC grains began to grow in the solid phase sintering stage.A high-performance nano-nitrogen-containing cemented carbide with uniform microstructure and good interfacial bonding can be obtained by increasing the sintering temperature to 1380℃.It has a transverse rupture strength(TRS)of 5057 MPa and a hardness of 1956 HV30.展开更多
A new process, NOx reduction with recycling flue gas and modifying coke breeze, was proposed. The effects of modified coke breeze and recycled flue gas on NOx reduction were investigated by sinter pot tests. The resul...A new process, NOx reduction with recycling flue gas and modifying coke breeze, was proposed. The effects of modified coke breeze and recycled flue gas on NOx reduction were investigated by sinter pot tests. The results show that the NOx reduction rate is over 10wt% in the sintering of modified coke breeze, the effects of the additives on NOx reduction are: CeO2〉CaO〉K2CO3. The NOx reduction rate increases with the amount of recycled flue gas, and is 22.35wt% in the sintering with recycling 30vol% of the flue gas. When 30vol% of the flue gas is recycled into the sintering of CeO2, CaO, and K2CO3 modified coke breeze, the NOx reduction rates are 36.10wt%, 32.56wt%, and 32.17wt%, respectively.展开更多
A new process called'NOx reduction by coupling combustion with recycling flue gas(RCCRF)'was proposed to decrease NOx emission during the iron ore sintering process.The simulation test of NOx reduction was perform...A new process called'NOx reduction by coupling combustion with recycling flue gas(RCCRF)'was proposed to decrease NOx emission during the iron ore sintering process.The simulation test of NOx reduction was performed over sintered ore and in the process of coke combustion.Experimentally,NOx reduction was also carried out by sintering pot test.For sintered ore,the amount of NOx emission is reduced by 15wt%-25wt% at 400-550oC using 2.0vol% H2 or 2.0vol% CO,or reduced by 10wt%-30wt% at 560-720oC using 0.15vol% NH3.NOx reduction is around 10wt% by coupling combustion of pyrolysis gas and coke,or around 16wt% by recycling flue gas into coke combustion.By RCCRF,the maximum NOx reduction ratio is about 23wt% in coke combustion experiment and over 40wt% in sintering pot test.展开更多
Process control is an effective approach to reduce the NOx emission from sintering flue gas.The effects of different materials adhered on coke breeze on NOx emission characteristics and sintering performance were stud...Process control is an effective approach to reduce the NOx emission from sintering flue gas.The effects of different materials adhered on coke breeze on NOx emission characteristics and sintering performance were studied.Results showed that the coke breeze adhered with the mixture of CaO and Fe2O3 or calcium ferrite significantly lowers the NOx emission concentration and conversion ratio of fuel-N to NOx.Pretreating the coke with the mixture of lime slurry and iron ore fines helped to improve the granulation effect,and optimize the carbon distribution in granules.When the mass ratio of coke breeze,quick lime,water and iron ore fines was 2:1:1:1,the average NOx emission concentration was decreased from 220 mg/m3 to 166 mg/m3,and the conversion ratio of fuel-N was reduced from 54.2%to 40.9%.展开更多
The traditional low-pressure sintering was optimized for the preparation of Ti(C_(0.5)N_(0.5))-WC-Mo_2 C-TaC-Co-Ni cermets. Nitrogen was introduced into sintering system during different stages and with different pres...The traditional low-pressure sintering was optimized for the preparation of Ti(C_(0.5)N_(0.5))-WC-Mo_2 C-TaC-Co-Ni cermets. Nitrogen was introduced into sintering system during different stages and with different pressures. The morphology and mechanical properties of cermets were investigated by scanning electron microscopy(SEM), X-ray diffraction(XRD), and measurements of transverse rupture strength(TRS), Vickers-hardness(HV) and fracture toughness(K_(IC)). The degree of denitrification is directly related to the amount of η phase. When nitrogen is introduced into the sintering system, the amount of observed η phase decreases. When nitrogen is introduced during solid-state sintering with appropriate pressure, the core-rim structure is well developed. And TRS and hardness get enhanced while toughness tends to be deteriorated with the nitrogen pressure increasing. When nitrogen is introduced after the sintering temperature reaches 1 350 ℃ or at higher pressures, the volume fraction of η phase increases. Sintered with a nitrogen pressure of 1.0 kPa during 1 200-1 350 ℃, the bulk materials possess enhanced mechanical properties, in which the TRS, HV, and K_(IC) are 1 966 MPa, 1 583 MPa, and 9.08 MPa·m^(1/2), respectively.展开更多
Gradient cemented carbides with the surface depleted in cubic phases were prepared following normal powder metallurgical pro-cedures.Gradient zone formation and the influence of nitrogen introduction methods on the mi...Gradient cemented carbides with the surface depleted in cubic phases were prepared following normal powder metallurgical pro-cedures.Gradient zone formation and the influence of nitrogen introduction methods on the microstructure and performance of the alloys were investigated.The results show that the simple one-step vacuum sintering technique is doable for producing gradient cemented carbides.Gradient structure formation is attributed to the gradient in nitrogen activity during sintering,but is independent from nitrogen introduced methods.A uniform carbon distribution is found throughout the materials.Moreover,the transverse rupture strength of the cemented carbides can be increased by a gradient layer.Different nitrogen carriers give the alloys distinguishing microstructure and mechanical properties,and a gradient alloy with ultrafine-TiC0.5N0.5 is found optimal.展开更多
An experimental and computational fluid dynamics (CFD) numerical study of the sintering of an Al?7Zn?2.5Mg?1Cu alloy in flowing nitrogen was presented. Three rectangular bars with dimensions of 56 mm × 10 mm ...An experimental and computational fluid dynamics (CFD) numerical study of the sintering of an Al?7Zn?2.5Mg?1Cu alloy in flowing nitrogen was presented. Three rectangular bars with dimensions of 56 mm × 10 mm × 4.5 mm each, equally spaced 2 or 10 mm apart, were sintered in one batch at 620 °C for 40 min in a tube furnace. The pore distribution in the selected cross section of sintered samples was found to be dependent on the sample separation distance and the distance from the cross section examined to the sample end. A three-dimensional (3D) CFD model was developed to investigate the nitrogen gas behavior near each sintering surface of the three samples during isothermal sintering. The variation in porosity in the cross section of each sintered sample along sample length was found to be closely related to the nitrogen gas flow field near the sintering surfaces.展开更多
Calcium stabilized nitrogen rich sialon ceramics having a general formula of Ca_(x)Si_(12-2x)Al_(2x)N_(16) with x value(x is the solubility of cation Ca in α-sialon structure)in the range of 0.2-2.2 for compositions ...Calcium stabilized nitrogen rich sialon ceramics having a general formula of Ca_(x)Si_(12-2x)Al_(2x)N_(16) with x value(x is the solubility of cation Ca in α-sialon structure)in the range of 0.2-2.2 for compositions lying along the Si_(3)N_(4):1/2Ca_(3)N_(2):3AlN line were synthesized using nano/submicron size starting powder precursors and spark plasma sintering(SPS)technique.The development of calcium stabilized nitrogen rich sialon ceramics at a significantly low sintering temperature of 1500℃(typically reported a temperature of 1700℃ or greater)remains to be the highlight of the present study.The SPS processed sialons were characterized for their microstructure,phase and compositional analysis,and physical and mechanical properties.Furthermore,a correlation was developed between the lattice parameters and the content(x)of the alkaline metal cation in the α-sialon phase.Well-densified single-phase nitrogen rich α-sialon ceramics were achieved in the range of 0.53(3)≤x≤1.27(3).A nitrogen richα-sialon sample possessing a maximum hardness of 22.4 GPa and fracture toughness of 6.1 MPa·m^(1/2) was developed.展开更多
基金supported by the National High-Tech Research and Development Program of China(No.2006AA03Z502)
文摘High-nitrogen nickel-free stainless steels were fabricated by the metal injection molding technique using high nitrogen alloying powders and a mixture of three polymers as binders.Mixtures of metal powders and binders with various proportions were also investigated, and an optimum powder loading capacity was determined as 64vol%.Intact injection molded compacts were successfully obtained by regulating the processing parameters.The debinding process for molded compacts was optimized with a combination of thermo-gravimetric analysis and differential scanning calorimetry analysis.An optimum relative density and nitrogen content of the specimens are obtained at 1360℃,which are 97.8%and 0.79wt%,respectively.
基金Funded by the National Key Research and Development Plan of China(No.2017YFB0305900)。
文摘WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC).The effect of sintering temperature on the microstructure and mechanical properties of nanocrystalline cemented carbide was studied by scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM)and mechanical property test.The results showed that the nano WC grains began to grow in the solid phase sintering stage.A high-performance nano-nitrogen-containing cemented carbide with uniform microstructure and good interfacial bonding can be obtained by increasing the sintering temperature to 1380℃.It has a transverse rupture strength(TRS)of 5057 MPa and a hardness of 1956 HV30.
基金the National Natural Science Foundation of China (No.50574085)the Knowledge Innovation Program of the Chinese Academy of Sciences (No.O82809)
文摘A new process, NOx reduction with recycling flue gas and modifying coke breeze, was proposed. The effects of modified coke breeze and recycled flue gas on NOx reduction were investigated by sinter pot tests. The results show that the NOx reduction rate is over 10wt% in the sintering of modified coke breeze, the effects of the additives on NOx reduction are: CeO2〉CaO〉K2CO3. The NOx reduction rate increases with the amount of recycled flue gas, and is 22.35wt% in the sintering with recycling 30vol% of the flue gas. When 30vol% of the flue gas is recycled into the sintering of CeO2, CaO, and K2CO3 modified coke breeze, the NOx reduction rates are 36.10wt%, 32.56wt%, and 32.17wt%, respectively.
基金supported by the National Natural Science Foundation of China (No.50574085)
文摘A new process called'NOx reduction by coupling combustion with recycling flue gas(RCCRF)'was proposed to decrease NOx emission during the iron ore sintering process.The simulation test of NOx reduction was performed over sintered ore and in the process of coke combustion.Experimentally,NOx reduction was also carried out by sintering pot test.For sintered ore,the amount of NOx emission is reduced by 15wt%-25wt% at 400-550oC using 2.0vol% H2 or 2.0vol% CO,or reduced by 10wt%-30wt% at 560-720oC using 0.15vol% NH3.NOx reduction is around 10wt% by coupling combustion of pyrolysis gas and coke,or around 16wt% by recycling flue gas into coke combustion.By RCCRF,the maximum NOx reduction ratio is about 23wt% in coke combustion experiment and over 40wt% in sintering pot test.
基金Project(2017YFC0210302)supported by the National Key R&D Program of ChinaProjects(U1660206,U1760107)supported by the National Natural Science Foundation of China
文摘Process control is an effective approach to reduce the NOx emission from sintering flue gas.The effects of different materials adhered on coke breeze on NOx emission characteristics and sintering performance were studied.Results showed that the coke breeze adhered with the mixture of CaO and Fe2O3 or calcium ferrite significantly lowers the NOx emission concentration and conversion ratio of fuel-N to NOx.Pretreating the coke with the mixture of lime slurry and iron ore fines helped to improve the granulation effect,and optimize the carbon distribution in granules.When the mass ratio of coke breeze,quick lime,water and iron ore fines was 2:1:1:1,the average NOx emission concentration was decreased from 220 mg/m3 to 166 mg/m3,and the conversion ratio of fuel-N was reduced from 54.2%to 40.9%.
基金Funded by the National Key Research and Development Plan of China(No.2017YFB0305900)the National Natural Science Foundation of China(No.51634006)the Sichuan Provincial Science Research Program of China(No.1640STC30132/01)
文摘The traditional low-pressure sintering was optimized for the preparation of Ti(C_(0.5)N_(0.5))-WC-Mo_2 C-TaC-Co-Ni cermets. Nitrogen was introduced into sintering system during different stages and with different pressures. The morphology and mechanical properties of cermets were investigated by scanning electron microscopy(SEM), X-ray diffraction(XRD), and measurements of transverse rupture strength(TRS), Vickers-hardness(HV) and fracture toughness(K_(IC)). The degree of denitrification is directly related to the amount of η phase. When nitrogen is introduced into the sintering system, the amount of observed η phase decreases. When nitrogen is introduced during solid-state sintering with appropriate pressure, the core-rim structure is well developed. And TRS and hardness get enhanced while toughness tends to be deteriorated with the nitrogen pressure increasing. When nitrogen is introduced after the sintering temperature reaches 1 350 ℃ or at higher pressures, the volume fraction of η phase increases. Sintered with a nitrogen pressure of 1.0 kPa during 1 200-1 350 ℃, the bulk materials possess enhanced mechanical properties, in which the TRS, HV, and K_(IC) are 1 966 MPa, 1 583 MPa, and 9.08 MPa·m^(1/2), respectively.
基金supported by the Science and Technology Projects of Sichuan Province,China,(No.2008GZ0179)
文摘Gradient cemented carbides with the surface depleted in cubic phases were prepared following normal powder metallurgical pro-cedures.Gradient zone formation and the influence of nitrogen introduction methods on the microstructure and performance of the alloys were investigated.The results show that the simple one-step vacuum sintering technique is doable for producing gradient cemented carbides.Gradient structure formation is attributed to the gradient in nitrogen activity during sintering,but is independent from nitrogen introduced methods.A uniform carbon distribution is found throughout the materials.Moreover,the transverse rupture strength of the cemented carbides can be increased by a gradient layer.Different nitrogen carriers give the alloys distinguishing microstructure and mechanical properties,and a gradient alloy with ultrafine-TiC0.5N0.5 is found optimal.
基金supported by Ampal Inc., a member of the United States Metal Powders Group, through the CAST CRC, a Cooperative Research Centre established by the Australian Commonwealth Government
文摘An experimental and computational fluid dynamics (CFD) numerical study of the sintering of an Al?7Zn?2.5Mg?1Cu alloy in flowing nitrogen was presented. Three rectangular bars with dimensions of 56 mm × 10 mm × 4.5 mm each, equally spaced 2 or 10 mm apart, were sintered in one batch at 620 °C for 40 min in a tube furnace. The pore distribution in the selected cross section of sintered samples was found to be dependent on the sample separation distance and the distance from the cross section examined to the sample end. A three-dimensional (3D) CFD model was developed to investigate the nitrogen gas behavior near each sintering surface of the three samples during isothermal sintering. The variation in porosity in the cross section of each sintered sample along sample length was found to be closely related to the nitrogen gas flow field near the sintering surfaces.
基金the support provided by both King Fahd University of Petroleum and Minerals,Saudi Arabia,and the University of Sharjah,United Arab Emirates
文摘Calcium stabilized nitrogen rich sialon ceramics having a general formula of Ca_(x)Si_(12-2x)Al_(2x)N_(16) with x value(x is the solubility of cation Ca in α-sialon structure)in the range of 0.2-2.2 for compositions lying along the Si_(3)N_(4):1/2Ca_(3)N_(2):3AlN line were synthesized using nano/submicron size starting powder precursors and spark plasma sintering(SPS)technique.The development of calcium stabilized nitrogen rich sialon ceramics at a significantly low sintering temperature of 1500℃(typically reported a temperature of 1700℃ or greater)remains to be the highlight of the present study.The SPS processed sialons were characterized for their microstructure,phase and compositional analysis,and physical and mechanical properties.Furthermore,a correlation was developed between the lattice parameters and the content(x)of the alkaline metal cation in the α-sialon phase.Well-densified single-phase nitrogen rich α-sialon ceramics were achieved in the range of 0.53(3)≤x≤1.27(3).A nitrogen richα-sialon sample possessing a maximum hardness of 22.4 GPa and fracture toughness of 6.1 MPa·m^(1/2) was developed.