We give the formulas of two-pion Hanbury-Brown-Twiss (HBT) correlation function for a partially coherent evolution pion-emitting source, using quantum probability amplitudes in a path-integral formalism. The multipl...We give the formulas of two-pion Hanbury-Brown-Twiss (HBT) correlation function for a partially coherent evolution pion-emitting source, using quantum probability amplitudes in a path-integral formalism. The multiple scattering of the particles in the source is taken into consideration based on Glauber scattering theory. Two-pion interferometry with effects of the multiple scattering and source collective expansion is examined for a partially coherent source of hadronic gas with a finite baryon density and evolving hydrodynamically. We do not find observable effect of either the multiple scattering or the source collective expansion on HBT chaotic parameter.展开更多
We examine two-pion Bose-Einstein correlations for partially coherent particle-emitting sources within quantum statistical formal- ism, where the sources are treated as classical currents with chaotic and coherent com...We examine two-pion Bose-Einstein correlations for partially coherent particle-emitting sources within quantum statistical formal- ism, where the sources are treated as classical currents with chaotic and coherent components. The two-pion correlation functions of the partially coherent sources contain a phase which is sensitive to the asymmetry of the source emission function. We investigate the influence of source opacity and expansion in high energy heavy ion collisions on the phase by Monte Carlo calculations. We find that these two physical effects shift the phase from zero. The Gaussian-formula fit results to the simulated two-pion correlation functions indicate that the opaque and expansion effects lead to a smaller interferometry radius Rout and a larger 2 parameter.展开更多
In this paper, a new method is applied to get the computation formula of partial coherence function. The main attention is paid to the computation formula of the partial coherence function with three and four signals....In this paper, a new method is applied to get the computation formula of partial coherence function. The main attention is paid to the computation formula of the partial coherence function with three and four signals. The advantages of the method discussed in the paper are clear in physical meaning and easy to compute at the end of the paper,the application of the method to the identification of an air compressor noise source is presented and the results are satisfactory.展开更多
基金Supported by National Natural Science Foundation of China (10575024)
文摘We give the formulas of two-pion Hanbury-Brown-Twiss (HBT) correlation function for a partially coherent evolution pion-emitting source, using quantum probability amplitudes in a path-integral formalism. The multiple scattering of the particles in the source is taken into consideration based on Glauber scattering theory. Two-pion interferometry with effects of the multiple scattering and source collective expansion is examined for a partially coherent source of hadronic gas with a finite baryon density and evolving hydrodynamically. We do not find observable effect of either the multiple scattering or the source collective expansion on HBT chaotic parameter.
基金supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. A201005)
文摘We examine two-pion Bose-Einstein correlations for partially coherent particle-emitting sources within quantum statistical formal- ism, where the sources are treated as classical currents with chaotic and coherent components. The two-pion correlation functions of the partially coherent sources contain a phase which is sensitive to the asymmetry of the source emission function. We investigate the influence of source opacity and expansion in high energy heavy ion collisions on the phase by Monte Carlo calculations. We find that these two physical effects shift the phase from zero. The Gaussian-formula fit results to the simulated two-pion correlation functions indicate that the opaque and expansion effects lead to a smaller interferometry radius Rout and a larger 2 parameter.
文摘In this paper, a new method is applied to get the computation formula of partial coherence function. The main attention is paid to the computation formula of the partial coherence function with three and four signals. The advantages of the method discussed in the paper are clear in physical meaning and easy to compute at the end of the paper,the application of the method to the identification of an air compressor noise source is presented and the results are satisfactory.