In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of...In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.展开更多
In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equat...In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.展开更多
Mutually coupled lines create challenges for legacy protection schemes.In this paper,a dynamic state estimation based protection(EBP)method is proposed to address these challenges.The method requires GPS synchronized ...Mutually coupled lines create challenges for legacy protection schemes.In this paper,a dynamic state estimation based protection(EBP)method is proposed to address these challenges.The method requires GPS synchronized measurements at both ends of the line and a high fidelity model of the protected line.The paper presents the dynamic model of the protected line and its impact on the performance of the protection scheme.Numerical simulations prove that the method can correctly identify faults,independent of position and type.The work also demonstrates the advantages of the proposed method versus legacy protection functions such as distance protection and line differential.These advantages include reliable and faster detection of internal low impedance faults,inter-circuit faults,and high impedance faults,even in cases of 1)partially coupled lines and 2)lack of measurements in adjacent lines.展开更多
This paper presents a fractional approach to study the mathematical model of tsunami wave propagation along a coastline of an ocean.Fractional Reduced Differential Transform Method(FRDTM)is used to analyze this model....This paper presents a fractional approach to study the mathematical model of tsunami wave propagation along a coastline of an ocean.Fractional Reduced Differential Transform Method(FRDTM)is used to analyze this model.The present model has been studied on the shallow-water assumption.It is represented by a time-fractional coupled system of non-linear partial differential equations.Solutions to the proposed model for different coastal slopes and ocean depths have been obtained.Effects of coast slope and sea depth variations on tsunami wave velocity and wave amplification have been demonstrated at different time levels and different ordersα.The obtained results are compared with Elzaki Adomian Decomposition Method(EADM)to validate the proposed method for an orderα=1.展开更多
文摘In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.
文摘In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.
基金supported by the Electric Power Research Institute(EPRI)and the Power Systems Engineering Research Center(PSERC).
文摘Mutually coupled lines create challenges for legacy protection schemes.In this paper,a dynamic state estimation based protection(EBP)method is proposed to address these challenges.The method requires GPS synchronized measurements at both ends of the line and a high fidelity model of the protected line.The paper presents the dynamic model of the protected line and its impact on the performance of the protection scheme.Numerical simulations prove that the method can correctly identify faults,independent of position and type.The work also demonstrates the advantages of the proposed method versus legacy protection functions such as distance protection and line differential.These advantages include reliable and faster detection of internal low impedance faults,inter-circuit faults,and high impedance faults,even in cases of 1)partially coupled lines and 2)lack of measurements in adjacent lines.
文摘This paper presents a fractional approach to study the mathematical model of tsunami wave propagation along a coastline of an ocean.Fractional Reduced Differential Transform Method(FRDTM)is used to analyze this model.The present model has been studied on the shallow-water assumption.It is represented by a time-fractional coupled system of non-linear partial differential equations.Solutions to the proposed model for different coastal slopes and ocean depths have been obtained.Effects of coast slope and sea depth variations on tsunami wave velocity and wave amplification have been demonstrated at different time levels and different ordersα.The obtained results are compared with Elzaki Adomian Decomposition Method(EADM)to validate the proposed method for an orderα=1.