On the basis of a detailed discussion of the development of total ionizing dose (TID) effect model, a new commercial-model-independent TID modeling approach for partially depleted silicon-on-insulator metal-oxide- s...On the basis of a detailed discussion of the development of total ionizing dose (TID) effect model, a new commercial-model-independent TID modeling approach for partially depleted silicon-on-insulator metal-oxide- semiconductor field effect transistors is developed. An exponential approximation is proposed to simplify the trap charge calculation. Irradiation experiments with 60Co gamma rays for IO and core devices are performed to validate the simulation results. An excellent agreement of measurement with the simulation results is observed.展开更多
In this paper, we investigate the single event transient (SET) occurring in partially depleted silicon-on-insulator (PDSOI) metal-oxide-semiconductor (MOS) devices irradiated by pulsed laser beams. Transient sig...In this paper, we investigate the single event transient (SET) occurring in partially depleted silicon-on-insulator (PDSOI) metal-oxide-semiconductor (MOS) devices irradiated by pulsed laser beams. Transient signal characteristics of a 0.18-p.m single MOS device, such as SET pulse width, pulse maximum, and collected charge, are measured and an- alyzed at wafer level. We analyze in detail the influences of supply voltage and pulse energy on the SET characteristics of the device under test (DUT). The dependences of SET characteristics on drain-induced barrier lowering (DIBL) and the parasitic bipolar junction transistor (PBJT) are also discussed. These results provide a guide for radiation-hardened deep sub-micrometer PDSOI technology for space electronics applications.展开更多
An anomalous total dose effect that the long length device is more susceptible to total ionizing dose than the short one is observed with the 0.13?μm partially depleted silicon-on-insulator technology. The measured ...An anomalous total dose effect that the long length device is more susceptible to total ionizing dose than the short one is observed with the 0.13?μm partially depleted silicon-on-insulator technology. The measured results and 3D technology computer aided design simulations demonstrate that the devices with different channel lengths may exhibit an enhanced reverse short channel effect after radiation. It is ascribed to that the halo or pocket implants introduced in processes results in non-uniform channel doping profiles along the device length and trapped charges in the shallow trench isolation regions.展开更多
The hysteresis effect in the output characteristics,originating from the floating body effect,has been measured in partially depleted(PD) silicon-on-insulator(SOI) MOSFETs at different back-gate biases.I D hystere...The hysteresis effect in the output characteristics,originating from the floating body effect,has been measured in partially depleted(PD) silicon-on-insulator(SOI) MOSFETs at different back-gate biases.I D hysteresis has been developed to clarify the hysteresis characteristics.The fabricated devices show the positive and negative peaks in the I D hysteresis.The experimental results show that the I D hysteresis is sensitive to the back gate bias in 0.13-渭m PD SOI MOSFETs and does not vary monotonously with the back-gate bias.Based on the steady-state Shockley-Read-Hall(SRH) recombination theory,we have successfully interpreted the impact of the back-gate bias on the hysteresis effect in PD SOI MOSFETs.展开更多
Total ionizing dose effect induced low frequency degradations in 130nm partially depleted silicon-on-insulator (SOI) technology are studied by ^60Co γ -ray irradiation. The experimental results show that the flick...Total ionizing dose effect induced low frequency degradations in 130nm partially depleted silicon-on-insulator (SOI) technology are studied by ^60Co γ -ray irradiation. The experimental results show that the flicker noise at the front gate is not affected by the radiation since the radiation induced trapped charge in the thin gate oxide can be ignored. However, both the Lorenz spectrum noise, which is related to the linear kink effect (LKE) at the front gate, and the flicker noise at the back gate are sensitive to radiation. The radiation induced trapped charge in shallow trench isolation and the buried oxide can deplete the nearby body region and can activate the traps which reside in the depletion region. These traps act as a GR center and accelerate the consumption of the accumulated holes in the floating body. It results in the attenuation of the LKE and the increase of the Lorenz spectrum noise. Simultaneously, the radiation induced trapped charge in the buried oxide can directly lead to an enhanced flicker noise at the back gate. The trapped charge density in the buried oxide is extracted to increase from 2.21×10^18 eV^-1 cm^-3 to 3.59×10^18?eV^-1 cm^-3 after irradiation.展开更多
In this study, we investigate the single-event transient(SET) characteristics of a partially depleted silicon-on-insulator(PDSOI) metal-oxide-semiconductor(MOS) device induced by a pulsed laser.We measure and an...In this study, we investigate the single-event transient(SET) characteristics of a partially depleted silicon-on-insulator(PDSOI) metal-oxide-semiconductor(MOS) device induced by a pulsed laser.We measure and analyze the drain transient current at the wafer level. The results indicate that the body-drain junction and its vicinity are more SET sensitive than the other regions in PD-SOI devices.We use ISE 3D simulation tools to analyze the SET response when different regions of the device are hit. Then, we discuss in detail the characteristics of transient currents and the electrostatic potential distribution change in devices after irradiation. Finally, we analyze the parasitic bipolar junction transistor(p-BJT) effect by performing both a laser test and simulations.展开更多
Radio-frequency(RF) characteristics under ultra-low temperature of multi-finger partially depleted silicon-oninsulator(PD SOI) n-type metal-oxide-semiconductor field-effect transistors(nMOSFETs) with tunnel diod...Radio-frequency(RF) characteristics under ultra-low temperature of multi-finger partially depleted silicon-oninsulator(PD SOI) n-type metal-oxide-semiconductor field-effect transistors(nMOSFETs) with tunnel diode body-contact(TDBC) structure and T-gate body-contact(TB) structure are investigated in this paper.When operating at 77 K,TDBC device suppresses floating-body effect(FBE) as well as the TB device.For TB device and TDBC device,cut-off frequency(fT) improves as the temperature decreases to liquid-helium temperature(77 K) while that of the maximum oscillation frequency(/max) is opposite due to the decrease of the unilateral power gain.While operating under 77 K,fT and f(max) of TDBC device reach to 125 GHz and 77 GHz,representing 8%and 15% improvements compared with those of TB device,respectively,which is mainly due to the lower parasitic resistances and capacitances.The results indicate that TDBC SOI MOSFETs could be considered as promising candidates for analog and RF applications over a wide range of temperatures and there is immense potential for the development of RF CMOS integrated circuits for cryogenic applications.展开更多
As SOI-CMOS technology nodes reach the tens ofnanometer regime, body-contacts become more and more ineffective to suppress the floating body effect. In this paper, self-bias effect as the cause for this failure is ana...As SOI-CMOS technology nodes reach the tens ofnanometer regime, body-contacts become more and more ineffective to suppress the floating body effect. In this paper, self-bias effect as the cause for this failure is analyzed and discussed in depth with respect to different structures and conditions. Other alternative approaches to suppressing the floating body effect are also introduced and discussed.展开更多
we investigate the effects of 60^Co γ-ray irradiation on the 130 nm partially-depleted silicon-on-isolator (PDSOI) input/output (I/O) n-MOSFETs. A shallow trench isolation (STI) parasitic transistor is responsi...we investigate the effects of 60^Co γ-ray irradiation on the 130 nm partially-depleted silicon-on-isolator (PDSOI) input/output (I/O) n-MOSFETs. A shallow trench isolation (STI) parasitic transistor is responsible for the observed hump in the back-gate transfer characteristic curve. The STI parasitic transistor, in which the trench oxide acts as the gate oxide, is sensitive to the radiation, and it introduces a new way to characterize the total ionizing dose (TID) responses in the STI oxide. A radiation enhanced drain induced barrier lower (DIBL) effect is observed in the STI parasitic transistor. It is manifested as the drain bias dependence of the radiation-induced off-state leakage and the increase of the DIBL parameter in the STI parasitic transistor after irradiation. Increasing the doping concentration in the whole body region or just near the STI sidewall can increase the threshold voltage of the STI parasitic transistor, and further reduce the radiation-induced off-state leakage. Moreover, we find that the radiation-induced trapped charge in the buried oxide leads to an obvious front-gate threshold voltage shift through the coupling effect. The high doping concentration in the body can effectively suppress the radiation-induced coupling effect.展开更多
The performance of a partially depleted silicon-on-insulator (PDSO1) dynamic threshold MOSFET (DT- MOS) is degraded by the large body capacitance and body resistance. Increasing silicon film thickness can reduce t...The performance of a partially depleted silicon-on-insulator (PDSO1) dynamic threshold MOSFET (DT- MOS) is degraded by the large body capacitance and body resistance. Increasing silicon film thickness can reduce the body resistance greatly, but the body capacitance also increases significantly at the same time. To solve this problem, a novel SOl DTMOSFET structure (drain/source-on-local-insulator structure) is proposed. From ISE simulation, the improvement in delay, obtained by optimizing p-n junction depth and silicon film thickness, is very significant. At the same time, we find that the drive current increases significantly as the thickness of the silicon film increases. Furthermore, only one additional mask is needed to form the local SIMOX, and other fabrication processes are fully compatible with conventional CMOS/SOI technology.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 61404151 and 61574153
文摘On the basis of a detailed discussion of the development of total ionizing dose (TID) effect model, a new commercial-model-independent TID modeling approach for partially depleted silicon-on-insulator metal-oxide- semiconductor field effect transistors is developed. An exponential approximation is proposed to simplify the trap charge calculation. Irradiation experiments with 60Co gamma rays for IO and core devices are performed to validate the simulation results. An excellent agreement of measurement with the simulation results is observed.
文摘In this paper, we investigate the single event transient (SET) occurring in partially depleted silicon-on-insulator (PDSOI) metal-oxide-semiconductor (MOS) devices irradiated by pulsed laser beams. Transient signal characteristics of a 0.18-p.m single MOS device, such as SET pulse width, pulse maximum, and collected charge, are measured and an- alyzed at wafer level. We analyze in detail the influences of supply voltage and pulse energy on the SET characteristics of the device under test (DUT). The dependences of SET characteristics on drain-induced barrier lowering (DIBL) and the parasitic bipolar junction transistor (PBJT) are also discussed. These results provide a guide for radiation-hardened deep sub-micrometer PDSOI technology for space electronics applications.
基金Supported by the Weapon Equipment Pre-Research Foundation of China under Grant No 9140A11020114ZK34147the Shanghai Municipal Natural Science Foundation under Grant Nos 15ZR1447100 and 15ZR1447200
文摘An anomalous total dose effect that the long length device is more susceptible to total ionizing dose than the short one is observed with the 0.13?μm partially depleted silicon-on-insulator technology. The measured results and 3D technology computer aided design simulations demonstrate that the devices with different channel lengths may exhibit an enhanced reverse short channel effect after radiation. It is ascribed to that the halo or pocket implants introduced in processes results in non-uniform channel doping profiles along the device length and trapped charges in the shallow trench isolation regions.
基金Project supported by the TCAD Simulation and SPICE Modeling of 0.13μm SOI Technology,China (Grant No. 2009ZX02306-002)
文摘The hysteresis effect in the output characteristics,originating from the floating body effect,has been measured in partially depleted(PD) silicon-on-insulator(SOI) MOSFETs at different back-gate biases.I D hysteresis has been developed to clarify the hysteresis characteristics.The fabricated devices show the positive and negative peaks in the I D hysteresis.The experimental results show that the I D hysteresis is sensitive to the back gate bias in 0.13-渭m PD SOI MOSFETs and does not vary monotonously with the back-gate bias.Based on the steady-state Shockley-Read-Hall(SRH) recombination theory,we have successfully interpreted the impact of the back-gate bias on the hysteresis effect in PD SOI MOSFETs.
基金Supported by the National Postdoctoral Program for Innovative Talents under Grant No BX201600037the Science and Technology Research Project of Guangdong Province under Grant Nos 20158090901048 and 2015B090912002the Distinguished Young Scientist Program of Guangdong Province under Grant No 2015A030306002
文摘Total ionizing dose effect induced low frequency degradations in 130nm partially depleted silicon-on-insulator (SOI) technology are studied by ^60Co γ -ray irradiation. The experimental results show that the flicker noise at the front gate is not affected by the radiation since the radiation induced trapped charge in the thin gate oxide can be ignored. However, both the Lorenz spectrum noise, which is related to the linear kink effect (LKE) at the front gate, and the flicker noise at the back gate are sensitive to radiation. The radiation induced trapped charge in shallow trench isolation and the buried oxide can deplete the nearby body region and can activate the traps which reside in the depletion region. These traps act as a GR center and accelerate the consumption of the accumulated holes in the floating body. It results in the attenuation of the LKE and the increase of the Lorenz spectrum noise. Simultaneously, the radiation induced trapped charge in the buried oxide can directly lead to an enhanced flicker noise at the back gate. The trapped charge density in the buried oxide is extracted to increase from 2.21×10^18 eV^-1 cm^-3 to 3.59×10^18?eV^-1 cm^-3 after irradiation.
基金Project supported by Funds of Key Laboratory,China(Grant No.y7ys011001)Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.y5yq01r002)
文摘In this study, we investigate the single-event transient(SET) characteristics of a partially depleted silicon-on-insulator(PDSOI) metal-oxide-semiconductor(MOS) device induced by a pulsed laser.We measure and analyze the drain transient current at the wafer level. The results indicate that the body-drain junction and its vicinity are more SET sensitive than the other regions in PD-SOI devices.We use ISE 3D simulation tools to analyze the SET response when different regions of the device are hit. Then, we discuss in detail the characteristics of transient currents and the electrostatic potential distribution change in devices after irradiation. Finally, we analyze the parasitic bipolar junction transistor(p-BJT) effect by performing both a laser test and simulations.
文摘Radio-frequency(RF) characteristics under ultra-low temperature of multi-finger partially depleted silicon-oninsulator(PD SOI) n-type metal-oxide-semiconductor field-effect transistors(nMOSFETs) with tunnel diode body-contact(TDBC) structure and T-gate body-contact(TB) structure are investigated in this paper.When operating at 77 K,TDBC device suppresses floating-body effect(FBE) as well as the TB device.For TB device and TDBC device,cut-off frequency(fT) improves as the temperature decreases to liquid-helium temperature(77 K) while that of the maximum oscillation frequency(/max) is opposite due to the decrease of the unilateral power gain.While operating under 77 K,fT and f(max) of TDBC device reach to 125 GHz and 77 GHz,representing 8%and 15% improvements compared with those of TB device,respectively,which is mainly due to the lower parasitic resistances and capacitances.The results indicate that TDBC SOI MOSFETs could be considered as promising candidates for analog and RF applications over a wide range of temperatures and there is immense potential for the development of RF CMOS integrated circuits for cryogenic applications.
文摘As SOI-CMOS technology nodes reach the tens ofnanometer regime, body-contacts become more and more ineffective to suppress the floating body effect. In this paper, self-bias effect as the cause for this failure is analyzed and discussed in depth with respect to different structures and conditions. Other alternative approaches to suppressing the floating body effect are also introduced and discussed.
基金supported by the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory,China(Grant No.ZHD201205)the National Natural Science Foundation of China(Grant No.61106103)
文摘we investigate the effects of 60^Co γ-ray irradiation on the 130 nm partially-depleted silicon-on-isolator (PDSOI) input/output (I/O) n-MOSFETs. A shallow trench isolation (STI) parasitic transistor is responsible for the observed hump in the back-gate transfer characteristic curve. The STI parasitic transistor, in which the trench oxide acts as the gate oxide, is sensitive to the radiation, and it introduces a new way to characterize the total ionizing dose (TID) responses in the STI oxide. A radiation enhanced drain induced barrier lower (DIBL) effect is observed in the STI parasitic transistor. It is manifested as the drain bias dependence of the radiation-induced off-state leakage and the increase of the DIBL parameter in the STI parasitic transistor after irradiation. Increasing the doping concentration in the whole body region or just near the STI sidewall can increase the threshold voltage of the STI parasitic transistor, and further reduce the radiation-induced off-state leakage. Moreover, we find that the radiation-induced trapped charge in the buried oxide leads to an obvious front-gate threshold voltage shift through the coupling effect. The high doping concentration in the body can effectively suppress the radiation-induced coupling effect.
文摘The performance of a partially depleted silicon-on-insulator (PDSO1) dynamic threshold MOSFET (DT- MOS) is degraded by the large body capacitance and body resistance. Increasing silicon film thickness can reduce the body resistance greatly, but the body capacitance also increases significantly at the same time. To solve this problem, a novel SOl DTMOSFET structure (drain/source-on-local-insulator structure) is proposed. From ISE simulation, the improvement in delay, obtained by optimizing p-n junction depth and silicon film thickness, is very significant. At the same time, we find that the drive current increases significantly as the thickness of the silicon film increases. Furthermore, only one additional mask is needed to form the local SIMOX, and other fabrication processes are fully compatible with conventional CMOS/SOI technology.