Photovoltaic(PV)systems utilize maximum power point tracking(MPPT)controllers to optimize power output amidst varying environmental conditions.However,the presence of multiple peaks resulting from partial shading pose...Photovoltaic(PV)systems utilize maximum power point tracking(MPPT)controllers to optimize power output amidst varying environmental conditions.However,the presence of multiple peaks resulting from partial shading poses a challenge to the tracking operation.Under partial shade conditions,the global maximum power point(GMPP)may be missed by most traditional maximum power point tracker.The flower pollination algorithm(FPA)and particle swarm optimization(PSO)are two examples of metaheuristic techniques that can be used to solve the issue of failing to track the GMPP.This paper discusses and resolves all issues associated with using the standard FPA method as the MPPT for PV systems.The first issue is that the initial values of pollen are determined randomly at first,which can lead to premature convergence.To minimize the convergence time and enhance the possibility of detecting the GMPP,the initial pollen values were modified so that they were near the expected peak positions.Secondly,in the modified FPA,population fitness and switch probability values both influence swapping between two-mode optimization,which may improve the flower pollination algorithm’s tracking speed.The performance of the modified flower pollination algorithm(MFPA)is assessed through a comparison with the perturb and observe(P&O)method and the standard FPA method.The simulation results reveal that under different partial shading conditions,the tracking time for MFPA is 0.24,0.24,0.22,and 0.23 s,while for FPA,it is 0.4,0.35,0.45,and 0.37 s.Additionally,the simulation results demonstrate that MFPA achieves higher MPPT efficiency in the same four partial shading conditions,with values of 99.98%,99.90%,99.93%,and 99.26%,compared to FPA with MPPT efficiencies of 99.93%,99.88%,99.91%,and 99.18%.Based on the findings from simulations,the proposed method effectively and accurately tracks the GMPP across a diverse set of environmental conditions.展开更多
Photovoltaics(PV)are widely used as renewable energy sources for standalone and grid connected PV systems.But these PV systems face major reduction in output power and efficiency due to Partial Shading Conditions(PSCs...Photovoltaics(PV)are widely used as renewable energy sources for standalone and grid connected PV systems.But these PV systems face major reduction in output power and efficiency due to Partial Shading Conditions(PSCs).This research paper focuses on the different choices of optimum PV Configuration under a given shading pattern to extract maximum power by mitigating mismatching loss.Various PV configurations,such as Series(S),Series Parallel(SP),Total Cross Tied(TCT),Bridge Linked(BL),Honey Comb(HC)and Alternate Total Cross Tied–Bridge Linked(A-TCT-BL)are modeled and analyzed under PSCs.Nine shading patterns,such as center,diagonal,corner,L-shaped,short and narrow,short and wide,long and narrow,long and wide and random,are considered to study the behavior of a 6×6 array form of a PV Configuration.Their performances are compared based on open circuit voltage,short circuit current,global maximum power point(GMPP),maximum voltage,maximum current,shading loss,fill factor,mismatching loss and efficiency.A novel Hybrid Configuration called A-TCT-BL PV Configuration is proposed to generate maximum power under PSCs and to minimize the number of cross ties and wiring complexities.This Configuration is an integration of TCT and BL PV Configuration and the simulation results prove the capability of this proposed PV Configuration to generate maximum power,fill factor,efficiency and minimum mismatching loss compared to S,SP,BL and HC PV Configurations under a majority of the PSCs investigated.A Canadian Solar CS5P-200M PV module is considered for simulation and is simulated using Matlab/Simulink software.展开更多
A signifcant challenge in the progress and development of Building-Integrated-Photovoltaic(B-I-PV)systems is concerned with the extraction of maximum power from PV modules.The PV system archtecture is an essential fea...A signifcant challenge in the progress and development of Building-Integrated-Photovoltaic(B-I-PV)systems is concerned with the extraction of maximum power from PV modules.The PV system archtecture is an essential feature to extract the maximum power.The conventional PV-centralinverter architecture consists of various connections among the PV modules,which are sensitive to shading effects and pro-duces mismatching power loss under partial shading conditions(PSCs),Hence,photovoltaic-distributed-maximum power point tracking(PV-D-MPPT)architecture has been proposed to extract the maximum power.In.PV-1 D-MPPT architecture,the output terminals of DC-DC converters are connected either in series or parallel configuration.The main limitation of the series configuration in open-loop MPPT control is the crosscoupling effect.Because of cross-coupling effects,the maximum-power-point(M-P-P)operation of shaded PV modules is lost under PSCs.The lost in M-P-P operation of shaded PV module also affects the unshaded modules M-P-P operation.Under crosscoupling ffeets,the DC-DC converters are consuming the power instead of delivering to the load.Despite the research activity,there are hardly any papers presenting a clear,comprehensive and mathematical analysis on the existence of cross-couplings in PV string-integrated-converters(S-1-Cs).This article presents a mathematical analysis and also explains the conditions for the existent of cross-coupling ffeets.The experimental results also validate with the mathematically analysed results.This article also discusses the modeling of the two-diode model of PV module,design of boost type S-1C,and the Perturb and Observe(P&O)MPPT algorithm implementation.展开更多
Renewable energy-based solar photovoltaic(PV)generation is the best alternative for conventional energy sources because of its natural abundance and environment friendly characteristics.Maximum power extraction from t...Renewable energy-based solar photovoltaic(PV)generation is the best alternative for conventional energy sources because of its natural abundance and environment friendly characteristics.Maximum power extraction from the PV system plays a critical role in increasing the efficiency of the solar power generation during partial shading conditions(PSCs).Therefore,a suitable maximum power point tracking(MPPT)technique to track the maximum power point(MPP)is of high need,even under PSCs.This paper presents an organized and concise review of MPPT techniques implemented for the PV systems in literature along with recent publications on various hardware design methodologies.Their classification is done into four categories,i.e.classical,intelligent,optimal,and hybrid depending on the tracking algorithm utilized to track MPP under PSCs.During uniform insolation,classical methods are highly preferred as there is only one peak in the P-V curve.However,under PSCs,the F-V curve exhibits multiple peaks,one global maximum power point(GMPP)and remaining are local maximum power points(LMPP’s).Under the PSCs,classical methods fail to operate at GMPP and hence there is a need for more advanced MPPT techniques.Every MPPT technique has its advantages and limits,but a streamlined MPPT is drafted in numerous parameters like sensors required,hardware implementation,cost viability,tracking speed and tracking efficiency.This study provides the advancement in this area since some parameter comparison is made at the end of every classification,which might be a prominent base-rule for picking the most gainful sort of MPPT for further research.展开更多
文摘Photovoltaic(PV)systems utilize maximum power point tracking(MPPT)controllers to optimize power output amidst varying environmental conditions.However,the presence of multiple peaks resulting from partial shading poses a challenge to the tracking operation.Under partial shade conditions,the global maximum power point(GMPP)may be missed by most traditional maximum power point tracker.The flower pollination algorithm(FPA)and particle swarm optimization(PSO)are two examples of metaheuristic techniques that can be used to solve the issue of failing to track the GMPP.This paper discusses and resolves all issues associated with using the standard FPA method as the MPPT for PV systems.The first issue is that the initial values of pollen are determined randomly at first,which can lead to premature convergence.To minimize the convergence time and enhance the possibility of detecting the GMPP,the initial pollen values were modified so that they were near the expected peak positions.Secondly,in the modified FPA,population fitness and switch probability values both influence swapping between two-mode optimization,which may improve the flower pollination algorithm’s tracking speed.The performance of the modified flower pollination algorithm(MFPA)is assessed through a comparison with the perturb and observe(P&O)method and the standard FPA method.The simulation results reveal that under different partial shading conditions,the tracking time for MFPA is 0.24,0.24,0.22,and 0.23 s,while for FPA,it is 0.4,0.35,0.45,and 0.37 s.Additionally,the simulation results demonstrate that MFPA achieves higher MPPT efficiency in the same four partial shading conditions,with values of 99.98%,99.90%,99.93%,and 99.26%,compared to FPA with MPPT efficiencies of 99.93%,99.88%,99.91%,and 99.18%.Based on the findings from simulations,the proposed method effectively and accurately tracks the GMPP across a diverse set of environmental conditions.
文摘Photovoltaics(PV)are widely used as renewable energy sources for standalone and grid connected PV systems.But these PV systems face major reduction in output power and efficiency due to Partial Shading Conditions(PSCs).This research paper focuses on the different choices of optimum PV Configuration under a given shading pattern to extract maximum power by mitigating mismatching loss.Various PV configurations,such as Series(S),Series Parallel(SP),Total Cross Tied(TCT),Bridge Linked(BL),Honey Comb(HC)and Alternate Total Cross Tied–Bridge Linked(A-TCT-BL)are modeled and analyzed under PSCs.Nine shading patterns,such as center,diagonal,corner,L-shaped,short and narrow,short and wide,long and narrow,long and wide and random,are considered to study the behavior of a 6×6 array form of a PV Configuration.Their performances are compared based on open circuit voltage,short circuit current,global maximum power point(GMPP),maximum voltage,maximum current,shading loss,fill factor,mismatching loss and efficiency.A novel Hybrid Configuration called A-TCT-BL PV Configuration is proposed to generate maximum power under PSCs and to minimize the number of cross ties and wiring complexities.This Configuration is an integration of TCT and BL PV Configuration and the simulation results prove the capability of this proposed PV Configuration to generate maximum power,fill factor,efficiency and minimum mismatching loss compared to S,SP,BL and HC PV Configurations under a majority of the PSCs investigated.A Canadian Solar CS5P-200M PV module is considered for simulation and is simulated using Matlab/Simulink software.
文摘A signifcant challenge in the progress and development of Building-Integrated-Photovoltaic(B-I-PV)systems is concerned with the extraction of maximum power from PV modules.The PV system archtecture is an essential feature to extract the maximum power.The conventional PV-centralinverter architecture consists of various connections among the PV modules,which are sensitive to shading effects and pro-duces mismatching power loss under partial shading conditions(PSCs),Hence,photovoltaic-distributed-maximum power point tracking(PV-D-MPPT)architecture has been proposed to extract the maximum power.In.PV-1 D-MPPT architecture,the output terminals of DC-DC converters are connected either in series or parallel configuration.The main limitation of the series configuration in open-loop MPPT control is the crosscoupling effect.Because of cross-coupling effects,the maximum-power-point(M-P-P)operation of shaded PV modules is lost under PSCs.The lost in M-P-P operation of shaded PV module also affects the unshaded modules M-P-P operation.Under crosscoupling ffeets,the DC-DC converters are consuming the power instead of delivering to the load.Despite the research activity,there are hardly any papers presenting a clear,comprehensive and mathematical analysis on the existence of cross-couplings in PV string-integrated-converters(S-1-Cs).This article presents a mathematical analysis and also explains the conditions for the existent of cross-coupling ffeets.The experimental results also validate with the mathematically analysed results.This article also discusses the modeling of the two-diode model of PV module,design of boost type S-1C,and the Perturb and Observe(P&O)MPPT algorithm implementation.
基金the Science and Engineering Research Board(SERB),Department of Science&Technology,Government of India under the Grant No.ECR/2017/000316.
文摘Renewable energy-based solar photovoltaic(PV)generation is the best alternative for conventional energy sources because of its natural abundance and environment friendly characteristics.Maximum power extraction from the PV system plays a critical role in increasing the efficiency of the solar power generation during partial shading conditions(PSCs).Therefore,a suitable maximum power point tracking(MPPT)technique to track the maximum power point(MPP)is of high need,even under PSCs.This paper presents an organized and concise review of MPPT techniques implemented for the PV systems in literature along with recent publications on various hardware design methodologies.Their classification is done into four categories,i.e.classical,intelligent,optimal,and hybrid depending on the tracking algorithm utilized to track MPP under PSCs.During uniform insolation,classical methods are highly preferred as there is only one peak in the P-V curve.However,under PSCs,the F-V curve exhibits multiple peaks,one global maximum power point(GMPP)and remaining are local maximum power points(LMPP’s).Under the PSCs,classical methods fail to operate at GMPP and hence there is a need for more advanced MPPT techniques.Every MPPT technique has its advantages and limits,but a streamlined MPPT is drafted in numerous parameters like sensors required,hardware implementation,cost viability,tracking speed and tracking efficiency.This study provides the advancement in this area since some parameter comparison is made at the end of every classification,which might be a prominent base-rule for picking the most gainful sort of MPPT for further research.