The energy and centrality dependencies of charged particle pseudorapidity density in relativistic nuclear collisions were studied using a hadron and string cascade model, JPCIAE. Both the relativistic experimental da...The energy and centrality dependencies of charged particle pseudorapidity density in relativistic nuclear collisions were studied using a hadron and string cascade model, JPCIAE. Both the relativistic experimental data and the PHOBOS and PHENIX Au+Au data at RHIC energy could be fairly reproduced within the framework of JPCIAE model and without retuning the model parameters. The predictions for collisions at the LHC energy were also given. We computed the participant nucleon distributions using different methods. It was found that the number of participant nucleons is not a well defined variable both experimentally and theoretically. Thus it may be inappropriate to use the charged particle pseudorapidity density per participant pair as a function of the number of participant nucleons for distinguishing various theoretical models.展开更多
文摘The energy and centrality dependencies of charged particle pseudorapidity density in relativistic nuclear collisions were studied using a hadron and string cascade model, JPCIAE. Both the relativistic experimental data and the PHOBOS and PHENIX Au+Au data at RHIC energy could be fairly reproduced within the framework of JPCIAE model and without retuning the model parameters. The predictions for collisions at the LHC energy were also given. We computed the participant nucleon distributions using different methods. It was found that the number of participant nucleons is not a well defined variable both experimentally and theoretically. Thus it may be inappropriate to use the charged particle pseudorapidity density per participant pair as a function of the number of participant nucleons for distinguishing various theoretical models.