期刊文献+
共找到7,020篇文章
< 1 2 250 >
每页显示 20 50 100
Computer vision-aided DEM study on the compaction characteristics of graded subgrade filler considering realistic coarse particle shapes 被引量:1
1
作者 Taifeng Li Kang Xie +2 位作者 Xiaobin Chen Zhixing Deng Qian Su 《Railway Engineering Science》 EI 2024年第2期194-210,共17页
The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on th... The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction. 展开更多
关键词 Subgrade filler particles Deep learning particle Shape analysis particle library Compaction characteristics Discrete element method(DEM)
下载PDF
Simulation of nanofluid natural convection based on single-particle hydrodynamics in energy-conserving dissipative particle dynamics(eDPD)
2
作者 Wei LU Shuo CHEN +1 位作者 Zhiyuan YU Jiayi ZHAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1429-1446,共18页
In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal ... In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal expansion coefficientβand the viscosityμof the simulated system containing nanoparticles are calculated and found to be in close alignment with the previous simulation results.The single-particle hydrodynamics in e DPD enables simulations of nanofluid natural convection with higher Rayleigh numbers and greater nanoparticle volume fractions.Additionally,this approach is utilized to simulate the nanoparticle distribution during the enhanced heat transfer process in the nanofluid natural convection.The localized aggregation of nanoparticles enhances the heat transfer performance of the nanofluid under specific Rayleigh numbers and nanoparticles volume fractions. 展开更多
关键词 single-particle hydrodynamics energy-conserving dissipative particle dynamics(eDPD) nanoparticle NANOFLUID heat transfer
下载PDF
Exploration of microscopic physical processes of Z-pinch by a modified electrostatic direct implicit particle-in-cell algorithm
3
作者 Kaixuan Li Cheng Ning +1 位作者 Ye Dong Chuang Xue 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期433-442,共10页
For investigating efficiently the stagnation kinetic-process of Z-pinch,we develop a novel modified electrostatic implicit particle-in-cell algorithm in radial one-dimension for Z-pinch simulation in which a small-ang... For investigating efficiently the stagnation kinetic-process of Z-pinch,we develop a novel modified electrostatic implicit particle-in-cell algorithm in radial one-dimension for Z-pinch simulation in which a small-angle cumulative binary collision algorithm is used.In our algorithm,the electric field in z-direction is solved by a parallel electrode-plate model,the azimuthal magnetic field is obtained by Ampere’s law,and the term for charged particle gyromotion is approximated by the cross product of the averaged velocity and magnetic field.In simulation results of 2 MA deuterium plasma shell Zpinch,the mass-center implosion trajectory agrees generally with that obtained by one-dimensional MHD simulation,and the plasma current also closely aligns with the external current.The phase space diagrams and radial-velocity probability distributions of ions and electrons are obtained.The main kinetic characteristic of electron motion is thermal equilibrium and oscillation,which should be oscillated around the ions,while that of ion motion is implosion inwards.In the region of stagnation radius,the radial-velocity probability distribution of ions transits from the non-equilibrium to equilibrium state with the current increasing,while of electrons is basically the equilibrium state.When the initial ion density and current peak are not high enough,the ions may not reach their thermal equilibrium state through collisions even in its stagnation phase. 展开更多
关键词 Z-PINCH particle-IN-CELL ion heating CHARGED particle COLLISIONS
下载PDF
Study of deep transportation and plugging performance of deformable gel particles in porous media
4
作者 Wen-Jing Zhao Jing Wang +1 位作者 Zhong-Yang Qi Hui-Qing Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期962-973,共12页
Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomen... Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomenon during particle migration, significantly impacts the deep plugging effect. Due to the complexity of the process, few studies have been conducted on this subject. In this paper, we conducted DGP flow experiments using a physical model of a multi-point sandpack under various injection rates and particle sizes. Particle size and concentration tests were performed at each measurement point to investigate the transportation behavior of particles in the deep part of the reservoir. The residual resistance coefficient and concentration changes along the porous media were combined to analyze the plugging performance of DGPs. Furthermore, the particle breakage along their path was revealed by analyzing the changes in particle size along the way. A mathematical model of breakage and concentration changes along the path was established. The results showed that the passage after breakage is a significant migration behavior of particles in porous media. The particles were reduced to less than half of their initial size at the front of the porous media. Breakage is an essential reason for the continuous decreases in particle concentration, size, and residual resistance coefficient. However, the particles can remain in porous media after breakage and play a significant role in deep plugging. Higher injection rates or larger particle sizes resulted in faster breakage along the injection direction, higher degrees of breakage, and faster decreases in residual resistance coefficient along the path. These conditions also led to a weaker deep plugging ability. Smaller particles were more evenly retained along the path, but more particles flowed out of the porous media, resulting in a poor deep plugging effect. The particle size is a function of particle size before injection, transport distance, and different injection parameters(injection rate or the diameter ratio of DGP to throat). Likewise, the particle concentration is a function of initial concentration, transport distance, and different injection parameters. These models can be utilized to optimize particle injection parameters, thereby achieving the goal of fine-tuning oil displacement. 展开更多
关键词 Physical simulation Deformable gel particle BREAKAGE particle size Residual resistance coefficient
下载PDF
Application and optimization design of non-obstructive particle damping-phononic crystal vibration isolator in viaduct structure-borne noise reduction
5
作者 SHI Duo-jia ZHAO Cai-you +3 位作者 ZHANG Xin-hao ZHENG Jun-yuan WEI Na-chao WANG Ping 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2513-2531,共19页
The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructi... The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions. 展开更多
关键词 non-obstructive particle damping phononic crystal vibration isolator band gap optimization floating-slab track bridge structure-borne noise control particle swarm optimization
下载PDF
State Estimation of Drive-by-Wire Chassis Vehicle Based on Dual Unscented Particle Filter Algorithm
6
作者 Zixu Wang Chaoning Chen +2 位作者 Quan Jiang Hongyu Zheng Chuyo Kaku 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期99-113,共15页
Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles... Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles,the current mature application of traditional vehicle state estimation algorithms can not meet the requirements of drive-by-wire chassis vehicle state estimation.This paper proposes a state estimation method for drive-by-wire chassis vehicle based on the dual unscented particle filter algorithm,which make full use of the known advantages of the four-wheel drive torque and steer angle parameters of the drive-by-wire chassis vehicle.In the dual unscented particle filter algorithm,two unscented particle filter transfer information to each other,observe the vehicle state information and the tire force parameter information of the four wheels respectively,which reduce the influence of parameter uncertainty and model parameter changes on the estimation accuracy during driving.The performance with the dual unscented particle filter algorithm,which is analyzed in terms of the time-average square error,is superior of the unscented Kalman filter algorithm.The effectiveness of the algorithm is further verified by driving simulator test.In this paper,a vehicle state estimator based on dual unscented particle filter algorithm was proposed for the first time to improve the estimation accuracy of vehicle parameters and states. 展开更多
关键词 Drive-by-wire chassis vehicle Vehicle state estimation Dual unscented particle filter Tire force estimation Unscented particle filter
下载PDF
Mass transfer enhancement and hydrodynamic performance with wire mesh coupling solid particles in bubble column reactor
7
作者 Chuanjun Di Jipeng Dong +3 位作者 Fei Gao Guanghui Chen Pan Zhang Jianlong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期195-205,共11页
It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on b... It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer. 展开更多
关键词 Fluid mechanics BUBBLE Mass transfer Wire mesh coupling solid particles particle image velocimetry Hydrodynamics
下载PDF
Significance of including lid thickness and particle shape factor in numerical modeling for prediction of particle trap efficiency of invert trap
8
作者 Salman Beg Deo Raj Kaushal 《Water Science and Engineering》 EI CAS CSCD 2024年第2期166-176,共11页
Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sedime... Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sediment build-up by catching sediment load.Previous three-dimensional(3D)computational studies have examined the particle trapping performance of invert traps of different shapes and depths under varied sediment and flow conditions,considering particles as spheres.For two-dimensional and 3D numerical modeling,researchers assumed the lid geometry to be a thin line and a plane,respectively.In this 3D numerical study,the particle trapping efficiency of a slotted irregular hexagonal invert trap fitted at the flume bottom was examined by incorporating the particle shape factor of non-spherical sewage solid particles and the thicknesses of upstream and downstream lids over the trap in the discrete phase model of the ANSYS Fluent 2020 R1 software.The volume of fluid(VOF)and the realizable k-turbulence models were used to predict the velocity field.The two-dimensional particle image velocimetry(PIV)was used to measure the velocity field inside the invert trap.The results showed that the thicknesses of upstream and downstream lids affected the velocity field and turbulent kinetic energy at all flow depths.The joint impact of the particle shape factor and lid thickness on the trap efficiency was significant.When both the lid thickness and particle shape factor were considered in the numerical modeling,trap efficiencies were underestimated,with relative errors of-8.66%to-0.65%in comparison to the experimental values of Mohsin and Kaushal(2017).They were also lower than the values predicted by Mohsin and Kaushal(2017),which showed an overall overestimation with errors of-2.3%to 17.4%. 展开更多
关键词 Invert trap Lid thickness particle image velocimetry particle shape factor Turbulent kinetic energy Scanning electron microscope
下载PDF
Threshold friction velocity influenced by soil particle size within the Columbia Plateau, northwestern United States
9
作者 MENG Ruibing MENG Zhongju +3 位作者 Brenton SHARRATT ZHANG Jianguo CAI Jiale CHEN Xiaoyan 《Journal of Arid Land》 SCIE CSCD 2024年第8期1147-1162,共16页
Wind erosion is a geomorphic process in arid and semi-arid areas and has substantial implications for regional climate and desertification.In the Columbia Plateau of northwestern United States,the emissions from fine ... Wind erosion is a geomorphic process in arid and semi-arid areas and has substantial implications for regional climate and desertification.In the Columbia Plateau of northwestern United States,the emissions from fine particles of loessial soils often contribute to the exceedance of inhalable particulate matter(PM)with an aerodynamic diameter of 10μm or less(PM10)according to the air quality standards.However,little is known about the threshold friction velocity(TFV)for particles of different sizes that comprise these soils.In this study,soil samples of two representative soil types(Warden sandy loam and Ritzville silt loam)collected from the Columbia Plateau were sieved to seven particle size fractions,and an experiment was then conducted to determine the relationship between TFV and particle size fraction.The results revealed that soil particle size significantly affected the initiation of soil movement and TFV;TFV ranged 0.304-0.844 and 0.249-0.739 m/s for different particle size fractions of Ritzville silt loam and Warden sandy loam,respectively.PM10 and total suspended particulates(TSP)emissions from a bed of 63-90μm soil particles were markedly higher for Warden sandy loam than for Ritzville silt loam.Together with the lower TFV of Warden sandy loam,dust emissions from fine particles(<100μm in diameter)of Warden sandy loam thus may be a main contributor to dust in the region's atmosphere,since the PM10 emissions from the soil erosion surfaces and its ensuing suspension within the atmosphere constitute an essential process of soil erosion in the Columbia Plateau.Developing and implementing strategic land management practices on sandy loam soils is therefore necessary to control dust emissions in the Columbia Plateau. 展开更多
关键词 particle size threshold friction velocity inhalable particulate matter total suspended particles Warden sandy loam Ritzville silt loam Columbia Plateau
下载PDF
A flexible multiscale algorithm based on an improved smoothed particle hydrodynamics method for complex viscoelastic flows
10
作者 Jinlian REN Peirong LU +2 位作者 Tao JIANG Jianfeng LIU Weigang LU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1387-1402,共16页
Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the ... Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results. 展开更多
关键词 multiscale method improved smoothed particle hydrodynamics(SPH) dissipative particle dynamics(DPD) multiscale universal interface(MUI) complex viscoelastic flow
下载PDF
Modeling analysis of cobalt-based Fischer-Tropsch catalyst particles
11
作者 Huashuai Wu Gang Wang +1 位作者 Yong Yang Yongwang Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期82-92,共11页
The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A se... The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A self-consistent kinetic model for Fischer-Tropsch reaction proposed here was found to correlate experimental data well and hence was used to describe the consumption rates of reactants and formation rates of hydrocarbon products.The perturbed-chain statistical associating fluid theory equation of state was used to describe vapor-liquid equilibrium behavior associated with Fischer-Tropsch reaction.Local interaction between intraparticle diffusion and Fischer-Tropsch reaction was investigated in detail.Results showed that in order to avoid the adverse influence of intraparticle diffusional limitations on catalyst reactivity and product selectivity,the use of small particles is necessary.Large eggshell spherical particles are shown to keep the original catalyst reactivity and enhance the selectivity of heavy hydrocarbon products.The suitable layer thickness for a spherical particle with a diameter of 2 mm is nearly 0.15 mm.With the same outer diameter of 2 mm,the catalyst reactivity and heavy product selectivity of hollow cylindrical particles with a layer thickness of 0.25 mm are found to be larger than eggshell spherical particles.From the viewpoint of catalytic performance,hollow cylindrical particles are a better choice for industrial applications. 展开更多
关键词 Fischer-Tropsch synthesis Kinetic modeling Vapor-liquid equilibria Numerical simulation Intraparticle diffusion particle shapes
下载PDF
Effect of Ellipsoidal Particle Shape on Tribological Properties of Lubricants Containing Nanoparticles
12
作者 Ling Pan Zhi Li +1 位作者 Yunhui Chen Guobin Lin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期231-242,共12页
Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,t... Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,the influence of diamond nanoparticles(DNPs)on the tribological properties of lubricants is investigated through friction experiments.Additionally,the friction characteristics of lubricants regarding ellipsoidal particle shape are investigated using molecular dynamics(MD)simulations.The results show that DNPs can drastically lower the lubricant's friction coefficientμfrom 0.21 to 0.117.The shearing process reveals that as the aspect ratio(α)of the nanoparticles approaches 1.0,the friction performance improves,and wear on the wall diminishes.At the same time,the shape of the nanoparticles tends to be spherical.When 0.85≤α≤1.0,rolling is ellipsoidal particles'main form of motion,and the friction force changes according to a periodic sinusoidal law.In the range of 0.80≤α<0.85,ellipsoidal particles primarily exhibit sliding as the dominant movement mode.Asαdecreases within this range,the friction force progressively increases.The friction coefficientμcalculated through MD simulation is 0.128,which is consistent with the experimental data. 展开更多
关键词 Molecular dynamics simulation Nanoparticle additives Ellipsoidal particles Tribological properties
下载PDF
Passive particles driven by self-propelled particle:The wake effect
13
作者 郑凯选 汪静文 +1 位作者 王世锋 聂德明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期500-507,共8页
This work focuses on numerically studying hydrodynamic interaction between a passive particle and a self-propelled particle,termed a squirmer,by using a two-dimensional lattice Boltzmann method(LBM).It is found that t... This work focuses on numerically studying hydrodynamic interaction between a passive particle and a self-propelled particle,termed a squirmer,by using a two-dimensional lattice Boltzmann method(LBM).It is found that the squirmer can capture a passive particle and propel it simultaneously,provided the passive particle is situated within the squirmer's wake.Our research shows that the critical capture distance,which determines whether the particle is captured,primarily depends on the intensity of the squirmer's dipolarity.The stronger dipolarity of squirmer results in an increased critical capture distance.Conversely,the Reynolds number is found to have minimal influence on this interaction.Interestingly,the passive particle,when driven by the squirmer's wake,contributes to a reduction in the squirmer's drag.This results in a mutual acceleration for both particles.Our findings can provide valuable perspectives for formulating the principles of reducing the drag of micro-swimmers and help to achieve the goal of using micro-swimmers to transport goods without physical tethers. 展开更多
关键词 lattice Boltzmann method(LBM) self-propelled particles particle-laden flow
下载PDF
Properties of Bark Particleboard Bonded with Demethylated Lignin Adhesives Derived from Leucaena leucocephala Bark
14
作者 Rafidah Md Salim Jahimin Asik Mohd Sani Sarjadi 《Journal of Renewable Materials》 EI CAS 2024年第4期737-769,共33页
Lignin extraction from bark can maximize the utilization of biomass waste,offer cost-effectiveness,and promote environmental friendliness when employed as an adhesive material in bark particleboard production.Particle... Lignin extraction from bark can maximize the utilization of biomass waste,offer cost-effectiveness,and promote environmental friendliness when employed as an adhesive material in bark particleboard production.Particles of fine(0.2 to 1.0 mm),medium(1.0 to 2.5 mm),and coarse(2.5 to 12.0 mm)sizes,derived from the bark of Leucaena leucocephala,were hot-pressed using a heating plate at 175℃for 7 min to create single-layer particleboards measuring 320 mm×320 mm×10 mm,targeting a density of 700 kg/m^(3).Subsequently,the samples were trimmed and conditioned at 20℃and 65%relative humidity.In this study,we compared bark particleboard bonded with urea formaldehyde(UF)adhesive to fine-sized particleboard bonded with demethylated lignin adhesive.The results indicated that bark particleboards utilizing demethylated lignin and UF adhesives exhibited similar qualities.Coarse particleboard showed differences in modulus of elasticity(MOE)and modulus of rupture(MOR),while medium-sized particles exhibited significant variations in moisture content(MC)and water absorption(WA).Furthermore,the thickness swelling of coarse and medium-sized particles under wet and oven-dried conditions exhibited notable distinctions.Overall,the demethylated lignin adhesive extracted from L.leucocephala bark demonstrated similar quality to UF adhesive,with particle size correlating inversely to the strength of the bark particleboard. 展开更多
关键词 Bark particleboard properties demethylated lignin lignin adhesives Leucaena leucocephala bark particles
下载PDF
Unified Description of the Three Stable Particles in Self-Action Allows Determination of Their Relative Masses
15
作者 Yair Goldin Halfon 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期185-196,共12页
The Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-eA<sub>μ</sub>)Ψ=mc<sup>2</sup>Ψ describes the bound states of the electron under the action of external potentials... The Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-eA<sub>μ</sub>)Ψ=mc<sup>2</sup>Ψ describes the bound states of the electron under the action of external potentials, A<sub>μ</sub>. We assumed that the fundamental form of the Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-S<sub>μ</sub>)Ψ=0 should describe the stable particles (the electron, the proton and the dark-matter-particle (dmp)) bound to themselves under the action of their own potentials S<sub>μ</sub>. The new equation reveals that self energy is consequence of self action, it also reveals that the spin angular momentum is consequence of the dynamic structure of the stable particles. The quantitative results are the determination of their relative masses as well as the determination of the electromagnetic coupling constant. 展开更多
关键词 Electron in Self Action Electron-Dark-Matter particle Mass Ratio Analytic Description Dark-Matter-particle
下载PDF
The Substructure of Elementary Particles Demonstrated by the I-Theory
16
作者 H. H. Swami Isa Christophe Dumas 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第2期469-514,共46页
Present studies in physics assume that elementary particles are the building blocks of all matter, and that they are zero-dimensional objects which do not occupy space. The new I-Theory predicts that elementary partic... Present studies in physics assume that elementary particles are the building blocks of all matter, and that they are zero-dimensional objects which do not occupy space. The new I-Theory predicts that elementary particles do indeed have a substructure, three dimensions, and occupy space, being composed of fundamental particles called I-particles. In this article we identify the substructural pattern of elementary particles and define the quanta of energy that form each elementary particle. We demonstrate that the substructure comprises two classes of quanta which we call “attraction quanta” and “repulsion quanta”. We create a model that defines the rest-mass energy of each elementary particle and can predict new particles. Lastly, in order to incorporate this knowledge into the contemporary models of science, a revised periodic table is proposed. 展开更多
关键词 I-Theory I-particle Causal Subtle Gross Quanta Attraction Quanta Repulsion Quanta Elementary particles LEPTONS BOSONS Hadron Periodic Table Black Matter White Matter Red Matter Gravitation Strong Force Weak Force Quantum Theory Heat Quantum Photon Neutrino
下载PDF
An improved particle filter indoor fusion positioning approach based on Wi-Fi/PDR/geomagnetic field 被引量:1
17
作者 Tianfa Wang Litao Han +5 位作者 Qiaoli Kong Zeyu Li Changsong Li Jingwei Han Qi Bai Yanfei Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期443-458,共16页
The existing indoor fusion positioning methods based on Pedestrian Dead Reckoning(PDR)and geomagnetic technology have the problems of large initial position error,low sensor accuracy,and geomagnetic mismatch.In this s... The existing indoor fusion positioning methods based on Pedestrian Dead Reckoning(PDR)and geomagnetic technology have the problems of large initial position error,low sensor accuracy,and geomagnetic mismatch.In this study,a novel indoor fusion positioning approach based on the improved particle filter algorithm by geomagnetic iterative matching is proposed,where Wi-Fi,PDR,and geomagnetic signals are integrated to improve indoor positioning performances.One important contribution is that geomagnetic iterative matching is firstly proposed based on the particle filter algorithm.During the positioning process,an iterative window and a constraint window are introduced to limit the particle generation range and the geomagnetic matching range respectively.The position is corrected several times based on geomagnetic iterative matching in the location correction stage when the pedestrian movement is detected,which made up for the shortage of only one time of geomagnetic correction in the existing particle filter algorithm.In addition,this study also proposes a real-time step detection algorithm based on multi-threshold constraints to judge whether pedestrians are moving,which satisfies the real-time requirement of our fusion positioning approach.Through experimental verification,the average positioning accuracy of the proposed approach reaches 1.59 m,which improves 33.2%compared with the existing particle filter fusion positioning algorithms. 展开更多
关键词 Fusion positioning particle filter Geomagnetic iterative matching Iterative window Constraint window
下载PDF
Extended wet sieving method for determination of complete particle size distribution of general soils 被引量:1
18
作者 Shengnan Ma Yi Song +2 位作者 Jiawei Liu Xingyu Kang Zhongqi Quentin Yue 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期242-257,共16页
The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional meth... The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method. 展开更多
关键词 particle size distribution(PSD) General soil SILT CLAY Wet sieving Physical and chemical properties
下载PDF
Particle agglomeration and inhibition method in the fluidized pyrolysis reaction of waste resin 被引量:1
19
作者 Congjing Ren Peng Zhang +3 位作者 Qi Song Zhengliang Huang Yao Yang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期135-147,共13页
This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and... This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles. 展开更多
关键词 Pyrolysis reaction of waste resin FLUIDIZATION particle agglomeration KAOLIN
下载PDF
A stable implicit nodal integration-based particle finite element method(N-PFEM)for modelling saturated soil dynamics 被引量:1
20
作者 Liang Wang Xue Zhang +1 位作者 Jingjing Meng Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2172-2183,共12页
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene... In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics. 展开更多
关键词 particle finite element method Nodal integration Dynamic saturated media Second-order cone programming(SOCP)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部