The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional meth...The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.展开更多
Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties....Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties.In this study,we analyzed in situ measured size distributions of sea salt aerosols from four field campaigns and used multi-mode lognormal size distributions to fit the data.We employed super-spheroids and coated super-spheroids to account for the particles’non-sphericity,inhomogeneity,and hysteresis effect during the deliquescence and crystallization processes.To compute the singlescattering properties of sea salt aerosols,we used the state-of-the-art invariant imbedding T-matrix method,which allows us to obtain accurate optical properties for sea salt aerosols with a maximum volume-equivalent diameter of 12μm at a wavelength of 532 nm.Our results demonstrated that the particle models developed in this study were successful in replicating both the measured depolarization and lidar ratios at various relative humidity(RH)levels.Importantly,we observed that large-size particles with diameters larger than 4μm had a substantial impact on the optical properties of sea salt aerosols,which has not been accounted for in previous studies.Specifically,excluding particles with diameters larger than 4μm led to underestimating the scattering and backscattering coefficients by 27%−38%and 43%−60%,respectively,for the ACE-Asia field campaign.Additionally,the depolarization ratios were underestimated by 0.15 within the 50%−70%RH range.These findings emphasize the necessity of considering large particle sizes for optical modeling of sea salt aerosols.展开更多
The particle composition and spatial distribution of landslide-induced dam bodies are critical geotechnical parameters for studying the hazards of dam-break floods.However,current research often neglects the influence...The particle composition and spatial distribution of landslide-induced dam bodies are critical geotechnical parameters for studying the hazards of dam-break floods.However,current research often neglects the influence of the initial particle composition and spatial distribution of the landslide on the particle composition and spatial distribution of the landslide dam.This study investigated the impact of initial particle size distribution,volume,and sliding length on the energy and velocity changes of characteristic particles during the sliding process and the spatial distribution of particle sizes in the landslide dam body.Numerical simulations and physical models were employed to examine the effects of sequential gradient arrangements(where particle sizes decrease from top to bottom)and four other different initial particle arrangements on the energy and velocity changes of particles and the spatial distribution of particle sizes in the dam body.The study reveals the characteristics of translational and rotational energy of different particles and the laws of mechanical energy conversion,obtaining the spatial distribution patterns of particle sizes in landslide-induced dams.The results show that under the sequential gradient arrangement,the energy dissipation of the landslide movement is lower,with larger particles mainly distributed at the distal end and smaller particles at the proximal end of the landslide dam.In contrast,under the reverse gradient arrangement,the energy dissipation of the landslide movement is higher,and the distribution pattern of the dam particles is opposite to that of the sequential gradient arrangement.For the other arrangement modes,the spatial distribution of dam particles falls between the aforementioned two.There is a positive correlation between particle size and translational kinetic energy within the particle flow during the landslide process,and rotational motion increases energy dissipation.Under constant slope conditions,sliding length does not affect the movement pattern of the particle flow or the spatial distribution of particles in the dam body.The findings of this study provide a scientific basis for the accurate simulation and prediction of dam-break flood processes.展开更多
The distribution of adsorbent particle sizes typically has a significant impact on adsorption performance.Most fixed-bed adsorption studies adopt the assumption of average particle size to simplify the adsorption mode...The distribution of adsorbent particle sizes typically has a significant impact on adsorption performance.Most fixed-bed adsorption studies adopt the assumption of average particle size to simplify the adsorption model,but this does not eliminate the deviation between experiments and simulations caused by particle size distribution in practice.In this study,the population balance equation(PBE)and fixed-bed adsorption kinetics model were combined to simulate the adsorption process in a fixed-bed reactor,modeling the distribution of adsorbate uptake over time on adsorbent particles of different sizes.We integrated and optimized the PBE and fixed-bed mass transfer model in the algorithm,and the resulting combined model adopts a variable time step size,which can achieve a balance between computational efficiency and error while ensuring computational convergence.By slicing the model in the spatial dimension,multiple sets of PBE can be calculated in parallel,improving computational efficiency.The adsorption process of single-component and multi-component CO_(2)/CH_(4)/N_(2)on 4A zeolite without binder was simulated,and the influence of adsorbent particle size distribution was analyzed.Simulation results show that the assumption of average adsorbent particle size,which was commonly made in published work,will underestimate the time required for adsorbates to break through the fixed bed compared with the assumption of uniform adsorbent particle size.This model helps to consider the impact of adsorbent particle size distribution on the adsorption process,thereby improving the prediction accuracy of adsorbent performance.展开更多
High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality c...High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.展开更多
Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose ...Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose the suitable initial gray level threshold whichis used to change the gray level images taken by PIV to black and white ones, then every particle inan image is isolated totally. For every isolating particle, its contour is tracked by the edgeenhancement filter function and kept by Freeman s chain code. Based on a set of particle s chincode, its size and size distribution are calculated and sorted. Finally, the experimental data ofcalcium particles and water drops, separately injected into the activation chamber, and the erroranalysis of data are given out.展开更多
The particle size distribution of polymer always develops in emulsion polymerization systems,and certain key phenomena/mechanisms as well as properties of the final product are significantly affected by this distribut...The particle size distribution of polymer always develops in emulsion polymerization systems,and certain key phenomena/mechanisms as well as properties of the final product are significantly affected by this distribution.This review mainly focuses on the measurement methods of particle size distribution rather than average particle size during the emulsion polymerization process,including the existing off-line,on-line,and in-line measurement methods.Moreover,the principle,resolution,performance,advantages,and drawbacks of various methods for evaluating particle size distribution are contrasted and illustrated.Besides,several possible development directions or solutions of the in-line measurement technology are explored.展开更多
Internal erosion occurs when fine particles escape from the soil driven by seepage flow,which is considered to be the crucial factor causing the failure of earth structures filled with gravelly soil.The objective of t...Internal erosion occurs when fine particles escape from the soil driven by seepage flow,which is considered to be the crucial factor causing the failure of earth structures filled with gravelly soil.The objective of this paper is to suggest an appropriate method to assess internal erosion potential of gravelly soil.By analyzing the sensitivity of soil material to internal erosion,the variable(Dc15/df85)max and the content of coarse particles(Pc)are selected as the evaluation indexes(Dc15 and df85 are the diameters of 15%mass passing in the coarse component and 85%mass passing in the fine component,respectively).A series of gravelly soils with different particle size distributions are tested for internal erosion by the self-made permeameter.Based on the test results,an evaluation method for the internal erosion of gravelly soil is proposed.Gravelly soil is prone to internal erosion when 60%≤Pc<95%and(Dc15/df85)max≥9.5.The proposed method shows good accuracy in evaluating the internal erosion of 36 soil samples from other studies,which confirms the reliability of the method.The proposed method makes it possible to accurately assess internal erosion of gravelly soil,and an alternative method is provided for engineers to determine whether there is a risk of internal erosion in earth structures consisting of gravelly soil.展开更多
Based on various ultrasonic loss mechanisms, the formula of the cumulative mass percentage of minerals with different particle sizes was given, with which the particle size distribution was integrated into an ultrason...Based on various ultrasonic loss mechanisms, the formula of the cumulative mass percentage of minerals with different particle sizes was given, with which the particle size distribution was integrated into an ultrasonic attenuation model. And then the correlations between the ultrasonic attenuation and the pulp density, and the particle size were obtained. The derived model was combined with the experiment and the analysis of experimental data to determine the inverse model relating ultrasonic attenuation coefficient with size distribution. Finally, an optimization method of inverse parameter, genetic algorithm was applied for particle size distribution. The results of inverse calculation show that the precision of measurement was high.展开更多
The weighted-sum-of-gray-gas(WSGG)model and Mie theory are applied to study the influents of particle size on the radiative transfer in high temperature homogeneous gas-particle mixtures,such as the flame in aero-engi...The weighted-sum-of-gray-gas(WSGG)model and Mie theory are applied to study the influents of particle size on the radiative transfer in high temperature homogeneous gas-particle mixtures,such as the flame in aero-engine combustor.The radiative transfer equation is solved by the finite volume method.The particle size is assumed to obey uniform distribution and logarithmic normal(L-N)distribution,respectively.Results reveal that when particle size obeys uniform distribution,increasing particle size with total particle volume fraction fvunchanged will result in the decreasing of the absolute value of radiative heat transfer properties,and the effect of ignoring particle scattering will also be weakened.Opposite conclusions can be obtained when total particle number concentration N0 is unchanged.Moreover,if particle size obeys L-N distribution,increasing the narrowness indexσor decreasing the characteristic diameter Dˉwith the total particle volume fraction fvunchanged will increase the absolute value of radiative heat transfer properties.With total particle number concentration N0 unchanged,opposite conclusions for radiative heat source and incident radiation terms can be obtained except for radiative heat flux term.As a whole,the effects of particle size on the radiative heat transfer in the high-temperature homogeneous gas-particle mixtures are complicated,and the particle scattering cannot be ignoring just according to the particle size.展开更多
Particle number and mass concentrations were measured in Beijing during the winter and summer periods in 2003, together with some other parameters including black carbon (BC) and meteorological conditions. Particle ma...Particle number and mass concentrations were measured in Beijing during the winter and summer periods in 2003, together with some other parameters including black carbon (BC) and meteorological conditions. Particle mass concentrations exhibited low seasonality, and the ratio of PM2.5/PM10 in winter was higher than that in summer. Particle number size distribution (PSD) was characterized by four modes and exhibited low seasonality. BC was well correlated with the number and mass concentrations of accumulation and coarse particles, indicating these size particles are related to anthropogenic activities. Particle mass and number concentrations (except ultra-fine and nucleation particles) followed well the trends of BC concentration for the majority of the day, indicating that most particles were associated with primary emissions. The diurnal number distributions of accumulation and coarse mode particles were characterized by two peaks.展开更多
Characterizing soil particle-size distribution is a key measure towards soil property.The purpose of this study was to evaluate the multifractal characteristics of soil particle-size distribution among different land-...Characterizing soil particle-size distribution is a key measure towards soil property.The purpose of this study was to evaluate the multifractal characteristics of soil particle-size distribution among different land-use from a purple soil catchment and to generalize the spatial variation trend of multifractal parameters across the catchment.A total of 84 soil samples were collected from four kinds of land use patterns(dry land,orchard,paddy,and forest)in an agricultural catchment in the Three Gorges Reservoir Region,China.The multifractal analysis method was applied to quantitatively characterize the soil particle size distribution.Six soil particle size distribution(PSD)multifractal parameters(D(0),D(1),D(2),(35)a(q),(35)f[a(q)],α(0))were computed.Additionally,a geostatistical analysis was employed to reveal the spatial differentiation and map the spatial distribution of these parameters.Evident multifractal characteristics were found.The trend of generalized dimension spectrum of four land use patterns was basically consistent with the range of 0.8 to 2.0.However,orchard showed the largest monotonic decline,while the forest demonstrated the smallest decrease.D(0)of the four land use patterns were ranked as:dry land<orchard<forest<paddy,the order of D(1)was:dry land<paddy<orchard<forest,D(2)presented a rand-size relationship as dry land<forest<paddy<orchard.Furthermore,all land-use patterns presented asΔf[α(q)]<0.The rand-size relationship ofα(0)was same as D(0).The best-fitting model for D(0),D(1),D(2)andΔf[α(q)]was spherical model,forΔα(q)was gaussian model,and forα(0)was exponential model with structure variance ratio was 1.03%,49.83%,0.84%,1.48%,22.20%and 10.60%,respectively.The results showed that soil particles of each land use pattern were distributed unevenly.The multifractal parameters under different land use have significant differences,except forΔα(q).Differences in the composition of soil particles lead to differences in the multifractal properties even though they belong to the same soil texture.Farming behavior may refine particles and enhance the heterogeneity of soil particle distribution.Our results provide an effective reference for quantifying the impact of human activities on soil system in the Three Gorges Reservoir region.展开更多
The Dividing Distribution Function (DDF) method is one of the methods by which the particle size distribution of ultrafine powder can be evaluated from its small angle X-ray scattering data. In this paper, the stabili...The Dividing Distribution Function (DDF) method is one of the methods by which the particle size distribution of ultrafine powder can be evaluated from its small angle X-ray scattering data. In this paper, the stability of the solution obtained from DDF method has been investigated through optimizing the coefficient matrix, introducing a damping factor and a least square treatment. All calculations were accomplished with a microcomputer. It was shown that the average deviations of the size distribution obtained are not larger than the assigned random errors to the scattering intensities as long as the corresponding requirements are satisfied.展开更多
An intensive study of the particle size distribution of four commercial ultrafine alumina powders to obtain information about the powder agglomeration and relate them to the compactibility and the sinterability has be...An intensive study of the particle size distribution of four commercial ultrafine alumina powders to obtain information about the powder agglomeration and relate them to the compactibility and the sinterability has been made.展开更多
Despite international efforts to limit worker exposure to coal dust,it continues to impact the health of thousands of miners across Europe.Airborne coal dust has been studied to improve risk models and its control to ...Despite international efforts to limit worker exposure to coal dust,it continues to impact the health of thousands of miners across Europe.Airborne coal dust has been studied to improve risk models and its control to protect workers.Particle size distribution analyses shows that using spraying systems to suppress airborne dusts can reduce particulate matter concentrations and that coals with higher ash yields produce finer dust.There are marked chemical differences between parent coals and relatively coarse deposited dusts(up to _(500)μm,DD_(500)).Enrichments in Ca,K,Ba,Se,Pb,Cr,Mo,Ni and especially As,Sn,Cu,Zn and Sb in the finest respirable dust fractions could originate from:(i)mechanical machinery wear;(ii)variations in coal mineralogy;(iii)coal fly ash used in shotcrete,and carbonates used to reduce the risk of explosions.Unusual enrichments in Ca in mine dusts are attributed to the use of such concrete,and elevated K to raised levels of phyllosilicate mineral matter.Sulphur concentrations are higher in the parent coal than in the DD_(500),probably due to relatively lower levels of organic matter.Mass concentrations of all elements observed in this study remained below occupational exposure limits.展开更多
Based on the laser diffraction and Shifrin transform,the measurement method of particle size distribution has been improved extensively.While in real measurements,some noise peaks exist in the inversion data and are e...Based on the laser diffraction and Shifrin transform,the measurement method of particle size distribution has been improved extensively.While in real measurements,some noise peaks exist in the inversion data and are easily to be misread as particle distribution peaks.The improved method used a truncation function as a filter is hard to distinguish adjacent peaks.Here,by introducing the bimodal resolution criterion,the filter function is optimized,and to a quasi truncation function with the optimized filter function is studied to achieve optimal bimodal resolution and to remove noise peaks.This new quasi truncation function fits multimode distribution very well.By combining the quasi truncation function with Shifrin transform,noise peaks are removed well and the adjacent peaks are distinguished clearly.Finally,laser diffraction experiments are conducted and the particle size distribution is analyzed by adoping the method.The results show that the quasi truncation function has better bimodal resolution than the truncation function.Generally,by combining the quasi truncation function with the Shifrin transform,in particle size distribution measurements with laser diffraction,the bimodal resolution is greatly increased and the noise is removed well.And the results can restore the original distribution perfectly.Therefore,the new method with combination of the quasi truncation function and the Shifrin transform provides a feasible and effective way to measure the multimode particle size distribution by laser diffraction.展开更多
On the basis of population balance a mathematical model is developed to describe the formation of polymer particle in styrene suspension polymerization. The characteristics of coalescence and breakage of droplets and ...On the basis of population balance a mathematical model is developed to describe the formation of polymer particle in styrene suspension polymerization. The characteristics of coalescence and breakage of droplets and the gel effect are analyzed in particular. Parameters of the models are estimated by experimental data on reaction conversion and particle size distribution. The results show that the model is suitable for predicting polymerization processes.展开更多
Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast a...Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast and accurate, is often expressed in terms of area function or number of particles. In this paper, a mass model is developed which converts the image obtained size distribution to mass-wise distribution, mak- ing it readily comparable to mechanical sieving data. The concept of weight/particle ratio is introduced for mass reconstruction from 2D images of particle aggregates. Using this mass model, the effects of several particle shape parameters (such as major axis, minor axis, and equivalent diameter) on sieve-size of the particles is studied. It is shown that the sieve-size of a particle strongly depend upon the shape param- eters, 91% of its variation being explained by major axis, minor axis, bounding box length and equivalent diameter. Furthermore, minor axis gives an overall accurate estimate of particle sieve-size, error in mean size (D-50) being just 0.4%. However, sieve-size of smaller particles (〈20 ram) strongly depends upon the length of the smaller arm of the bounding box enclosing them and sieve-sizes of larger particles (〉20 mm) are highly correlated to their equivalent diameters. Multiple linear regression analysis has been used to generate overall mass-wise particle size distribution, considering the influences of all these shape parameters on particle sieve-size. Multiple linear regression generated overall mass-wise particle size distribution shows a strong correlation with sieve generated data. The adjusted R-square value of the regression analysis is found to be 99 percent (w.r,t cumulative frequency). The method proposed in this paper provides a time-efficient way of producing accurate (up to 99%) mass-wise PSD using digital image processing and it can be used effectively to renlace the mechanical sieving.展开更多
Particle number size distribution(PNSD) between 10 nm and 20 μm were measured in the Pearl River Delta(PRD) region in winter 2011.The average particle number concentration of the nucleation mode(10-20 nm),Aitken mode...Particle number size distribution(PNSD) between 10 nm and 20 μm were measured in the Pearl River Delta(PRD) region in winter 2011.The average particle number concentration of the nucleation mode(10-20 nm),Aitken mode(20-100 nm),accumulation mode(100 nm-1μm) and coarse mode(1-20 μm) particles were 1 552,7 470,4 012,and 19 cm-3,respectively.The volume concentration of accumulation mode particles with peak at 300 nm accounted for over 70% of the total volume concentration.Diurnal variations and dependencies on meteorological parameters of PNSD were investigated.The diurnal variation of nucleation mode particles was mainly influenced by new particle formation events,while the diurnal variation of Aitken mode particles correlated to the traffic emission and the growth process of nucleation mode particles.When the PRD region was controlled by a cold high pressure,conditions of low relative humidity,high wind speed and strong radiation are favorable for the occurrence of new particle formation(NPF) events.The frequency of occurrence of NPF events was 21.3% during the whole measurement period.Parameters describing NPF events,including growth rate(GR) and source rate of condensable vapor(Q),were slightly larger than those in previous literature.This suggests that intense photochemical and biological activities may be the source of condensable vapor for particle growth,even during winter in the PRD.展开更多
The effect of particle size distribution of alumina has been investigated for silica-free tabular alumina low cement castables( LCC). Three different combinations of alumina have been included in the matrix formulat...The effect of particle size distribution of alumina has been investigated for silica-free tabular alumina low cement castables( LCC). Three different combinations of alumina have been included in the matrix formulation of the castables. All the three combinations are composed of a bimodal reactive alumina and a fine ground monomodal reactive alumina. The first A1 and second A2 combinations are respectively composed of bimodal and monomodal aluminas from Alteo,with a different fine /coarse particles ratio for the bimodal alumina. The two Alteo combinations have been compared with a third combination C composed of a bimodal commercially available grade and a monomodal commercially available grade. Optimization of particle size packing has been performed for the three different formulations using the Dinger and Funk model. With this optimization,the two formulations based on Alteo material( PFR,PBR and PFR40) achieve the same level of performance in applicative tests( flowability,cold physical properties,mechanical resistance,crystalline phases,thermal shocks and corrosion) as reference solutions on the market.展开更多
基金The work described in this paper was partially supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project Nos.HKU 17207518 and R5037-18).
文摘The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.
基金supported by the National Natural Science Foundation of China(Grant Nos.42022038,and 42090030).
文摘Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties.In this study,we analyzed in situ measured size distributions of sea salt aerosols from four field campaigns and used multi-mode lognormal size distributions to fit the data.We employed super-spheroids and coated super-spheroids to account for the particles’non-sphericity,inhomogeneity,and hysteresis effect during the deliquescence and crystallization processes.To compute the singlescattering properties of sea salt aerosols,we used the state-of-the-art invariant imbedding T-matrix method,which allows us to obtain accurate optical properties for sea salt aerosols with a maximum volume-equivalent diameter of 12μm at a wavelength of 532 nm.Our results demonstrated that the particle models developed in this study were successful in replicating both the measured depolarization and lidar ratios at various relative humidity(RH)levels.Importantly,we observed that large-size particles with diameters larger than 4μm had a substantial impact on the optical properties of sea salt aerosols,which has not been accounted for in previous studies.Specifically,excluding particles with diameters larger than 4μm led to underestimating the scattering and backscattering coefficients by 27%−38%and 43%−60%,respectively,for the ACE-Asia field campaign.Additionally,the depolarization ratios were underestimated by 0.15 within the 50%−70%RH range.These findings emphasize the necessity of considering large particle sizes for optical modeling of sea salt aerosols.
基金reported in this manuscript is funded by the National Natural Science Foundation of China(Grant No.52130904).
文摘The particle composition and spatial distribution of landslide-induced dam bodies are critical geotechnical parameters for studying the hazards of dam-break floods.However,current research often neglects the influence of the initial particle composition and spatial distribution of the landslide on the particle composition and spatial distribution of the landslide dam.This study investigated the impact of initial particle size distribution,volume,and sliding length on the energy and velocity changes of characteristic particles during the sliding process and the spatial distribution of particle sizes in the landslide dam body.Numerical simulations and physical models were employed to examine the effects of sequential gradient arrangements(where particle sizes decrease from top to bottom)and four other different initial particle arrangements on the energy and velocity changes of particles and the spatial distribution of particle sizes in the dam body.The study reveals the characteristics of translational and rotational energy of different particles and the laws of mechanical energy conversion,obtaining the spatial distribution patterns of particle sizes in landslide-induced dams.The results show that under the sequential gradient arrangement,the energy dissipation of the landslide movement is lower,with larger particles mainly distributed at the distal end and smaller particles at the proximal end of the landslide dam.In contrast,under the reverse gradient arrangement,the energy dissipation of the landslide movement is higher,and the distribution pattern of the dam particles is opposite to that of the sequential gradient arrangement.For the other arrangement modes,the spatial distribution of dam particles falls between the aforementioned two.There is a positive correlation between particle size and translational kinetic energy within the particle flow during the landslide process,and rotational motion increases energy dissipation.Under constant slope conditions,sliding length does not affect the movement pattern of the particle flow or the spatial distribution of particles in the dam body.The findings of this study provide a scientific basis for the accurate simulation and prediction of dam-break flood processes.
基金supported by the research funds from the Bureau of Danyang Science and Technology,China(SF201803)the Department of Liaoning Science and Technology,China(2021JH1/10400063).
文摘The distribution of adsorbent particle sizes typically has a significant impact on adsorption performance.Most fixed-bed adsorption studies adopt the assumption of average particle size to simplify the adsorption model,but this does not eliminate the deviation between experiments and simulations caused by particle size distribution in practice.In this study,the population balance equation(PBE)and fixed-bed adsorption kinetics model were combined to simulate the adsorption process in a fixed-bed reactor,modeling the distribution of adsorbate uptake over time on adsorbent particles of different sizes.We integrated and optimized the PBE and fixed-bed mass transfer model in the algorithm,and the resulting combined model adopts a variable time step size,which can achieve a balance between computational efficiency and error while ensuring computational convergence.By slicing the model in the spatial dimension,multiple sets of PBE can be calculated in parallel,improving computational efficiency.The adsorption process of single-component and multi-component CO_(2)/CH_(4)/N_(2)on 4A zeolite without binder was simulated,and the influence of adsorbent particle size distribution was analyzed.Simulation results show that the assumption of average adsorbent particle size,which was commonly made in published work,will underestimate the time required for adsorbates to break through the fixed bed compared with the assumption of uniform adsorbent particle size.This model helps to consider the impact of adsorbent particle size distribution on the adsorption process,thereby improving the prediction accuracy of adsorbent performance.
基金the National Natural Science Foundation of China (Grant No.22105184)Research Fund of SWUST for PhD (Grant No.22zx7175)+1 种基金Sichuan Science and Technology Program (Grant No.2019ZDZX0013)Institute of Chemical Materials Program (Grant No.SXK-2022-03)for financial support。
文摘High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.
基金The Special Funds for State Key Projects for Fun- damental Research (G1999022201-04).
文摘Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose the suitable initial gray level threshold whichis used to change the gray level images taken by PIV to black and white ones, then every particle inan image is isolated totally. For every isolating particle, its contour is tracked by the edgeenhancement filter function and kept by Freeman s chain code. Based on a set of particle s chincode, its size and size distribution are calculated and sorted. Finally, the experimental data ofcalcium particles and water drops, separately injected into the activation chamber, and the erroranalysis of data are given out.
基金The National Key Research and Development Program(2020YFA0906804)the National Natural Science Foundation of China(22078325,22035007,91934301)+1 种基金the NSFC-EU project(31961133018)the Special Project of Strategic Leading Science and Technology,CAS(XDC06010302)are gratefully acknowledged.
文摘The particle size distribution of polymer always develops in emulsion polymerization systems,and certain key phenomena/mechanisms as well as properties of the final product are significantly affected by this distribution.This review mainly focuses on the measurement methods of particle size distribution rather than average particle size during the emulsion polymerization process,including the existing off-line,on-line,and in-line measurement methods.Moreover,the principle,resolution,performance,advantages,and drawbacks of various methods for evaluating particle size distribution are contrasted and illustrated.Besides,several possible development directions or solutions of the in-line measurement technology are explored.
基金financially supported by the National Natural Science Foundation of China(Grant No.41790432)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA20030301)。
文摘Internal erosion occurs when fine particles escape from the soil driven by seepage flow,which is considered to be the crucial factor causing the failure of earth structures filled with gravelly soil.The objective of this paper is to suggest an appropriate method to assess internal erosion potential of gravelly soil.By analyzing the sensitivity of soil material to internal erosion,the variable(Dc15/df85)max and the content of coarse particles(Pc)are selected as the evaluation indexes(Dc15 and df85 are the diameters of 15%mass passing in the coarse component and 85%mass passing in the fine component,respectively).A series of gravelly soils with different particle size distributions are tested for internal erosion by the self-made permeameter.Based on the test results,an evaluation method for the internal erosion of gravelly soil is proposed.Gravelly soil is prone to internal erosion when 60%≤Pc<95%and(Dc15/df85)max≥9.5.The proposed method shows good accuracy in evaluating the internal erosion of 36 soil samples from other studies,which confirms the reliability of the method.The proposed method makes it possible to accurately assess internal erosion of gravelly soil,and an alternative method is provided for engineers to determine whether there is a risk of internal erosion in earth structures consisting of gravelly soil.
基金Project supported by Technology Development and Research Special Foundation of National Science Research Academicand Institute , China
文摘Based on various ultrasonic loss mechanisms, the formula of the cumulative mass percentage of minerals with different particle sizes was given, with which the particle size distribution was integrated into an ultrasonic attenuation model. And then the correlations between the ultrasonic attenuation and the pulp density, and the particle size were obtained. The derived model was combined with the experiment and the analysis of experimental data to determine the inverse model relating ultrasonic attenuation coefficient with size distribution. Finally, an optimization method of inverse parameter, genetic algorithm was applied for particle size distribution. The results of inverse calculation show that the precision of measurement was high.
基金supported by the National Natural Science Foundation of China (No: 51806103)Jiangsu Provincial Natural Science Foundation(No: BK20170800)Open Funds of Aero-engine Thermal Environment and Structure Key Laboratory of Ministry of Industry and Information Technology (No. CEPE2018005)
文摘The weighted-sum-of-gray-gas(WSGG)model and Mie theory are applied to study the influents of particle size on the radiative transfer in high temperature homogeneous gas-particle mixtures,such as the flame in aero-engine combustor.The radiative transfer equation is solved by the finite volume method.The particle size is assumed to obey uniform distribution and logarithmic normal(L-N)distribution,respectively.Results reveal that when particle size obeys uniform distribution,increasing particle size with total particle volume fraction fvunchanged will result in the decreasing of the absolute value of radiative heat transfer properties,and the effect of ignoring particle scattering will also be weakened.Opposite conclusions can be obtained when total particle number concentration N0 is unchanged.Moreover,if particle size obeys L-N distribution,increasing the narrowness indexσor decreasing the characteristic diameter Dˉwith the total particle volume fraction fvunchanged will increase the absolute value of radiative heat transfer properties.With total particle number concentration N0 unchanged,opposite conclusions for radiative heat source and incident radiation terms can be obtained except for radiative heat flux term.As a whole,the effects of particle size on the radiative heat transfer in the high-temperature homogeneous gas-particle mixtures are complicated,and the particle scattering cannot be ignoring just according to the particle size.
文摘Particle number and mass concentrations were measured in Beijing during the winter and summer periods in 2003, together with some other parameters including black carbon (BC) and meteorological conditions. Particle mass concentrations exhibited low seasonality, and the ratio of PM2.5/PM10 in winter was higher than that in summer. Particle number size distribution (PSD) was characterized by four modes and exhibited low seasonality. BC was well correlated with the number and mass concentrations of accumulation and coarse particles, indicating these size particles are related to anthropogenic activities. Particle mass and number concentrations (except ultra-fine and nucleation particles) followed well the trends of BC concentration for the majority of the day, indicating that most particles were associated with primary emissions. The diurnal number distributions of accumulation and coarse mode particles were characterized by two peaks.
基金funded by the National Key R&D Program of China(2017YFD0800505)Chongqing Key R&D Project of Technology Innovation and Application(NO.cstc2018jscxmszd X0055)。
文摘Characterizing soil particle-size distribution is a key measure towards soil property.The purpose of this study was to evaluate the multifractal characteristics of soil particle-size distribution among different land-use from a purple soil catchment and to generalize the spatial variation trend of multifractal parameters across the catchment.A total of 84 soil samples were collected from four kinds of land use patterns(dry land,orchard,paddy,and forest)in an agricultural catchment in the Three Gorges Reservoir Region,China.The multifractal analysis method was applied to quantitatively characterize the soil particle size distribution.Six soil particle size distribution(PSD)multifractal parameters(D(0),D(1),D(2),(35)a(q),(35)f[a(q)],α(0))were computed.Additionally,a geostatistical analysis was employed to reveal the spatial differentiation and map the spatial distribution of these parameters.Evident multifractal characteristics were found.The trend of generalized dimension spectrum of four land use patterns was basically consistent with the range of 0.8 to 2.0.However,orchard showed the largest monotonic decline,while the forest demonstrated the smallest decrease.D(0)of the four land use patterns were ranked as:dry land<orchard<forest<paddy,the order of D(1)was:dry land<paddy<orchard<forest,D(2)presented a rand-size relationship as dry land<forest<paddy<orchard.Furthermore,all land-use patterns presented asΔf[α(q)]<0.The rand-size relationship ofα(0)was same as D(0).The best-fitting model for D(0),D(1),D(2)andΔf[α(q)]was spherical model,forΔα(q)was gaussian model,and forα(0)was exponential model with structure variance ratio was 1.03%,49.83%,0.84%,1.48%,22.20%and 10.60%,respectively.The results showed that soil particles of each land use pattern were distributed unevenly.The multifractal parameters under different land use have significant differences,except forΔα(q).Differences in the composition of soil particles lead to differences in the multifractal properties even though they belong to the same soil texture.Farming behavior may refine particles and enhance the heterogeneity of soil particle distribution.Our results provide an effective reference for quantifying the impact of human activities on soil system in the Three Gorges Reservoir region.
文摘The Dividing Distribution Function (DDF) method is one of the methods by which the particle size distribution of ultrafine powder can be evaluated from its small angle X-ray scattering data. In this paper, the stability of the solution obtained from DDF method has been investigated through optimizing the coefficient matrix, introducing a damping factor and a least square treatment. All calculations were accomplished with a microcomputer. It was shown that the average deviations of the size distribution obtained are not larger than the assigned random errors to the scattering intensities as long as the corresponding requirements are satisfied.
文摘An intensive study of the particle size distribution of four commercial ultrafine alumina powders to obtain information about the powder agglomeration and relate them to the compactibility and the sinterability has been made.
基金European Commission Research Fund for Coal and Steel(Grant Agreement Number–754205)Generalitat de Catalunya(SGR41).Centre of Excellence Severo Ochoa—Spanish Ministry of Science and Innovation(Project CEX2018-000794-S).
文摘Despite international efforts to limit worker exposure to coal dust,it continues to impact the health of thousands of miners across Europe.Airborne coal dust has been studied to improve risk models and its control to protect workers.Particle size distribution analyses shows that using spraying systems to suppress airborne dusts can reduce particulate matter concentrations and that coals with higher ash yields produce finer dust.There are marked chemical differences between parent coals and relatively coarse deposited dusts(up to _(500)μm,DD_(500)).Enrichments in Ca,K,Ba,Se,Pb,Cr,Mo,Ni and especially As,Sn,Cu,Zn and Sb in the finest respirable dust fractions could originate from:(i)mechanical machinery wear;(ii)variations in coal mineralogy;(iii)coal fly ash used in shotcrete,and carbonates used to reduce the risk of explosions.Unusual enrichments in Ca in mine dusts are attributed to the use of such concrete,and elevated K to raised levels of phyllosilicate mineral matter.Sulphur concentrations are higher in the parent coal than in the DD_(500),probably due to relatively lower levels of organic matter.Mass concentrations of all elements observed in this study remained below occupational exposure limits.
基金financially supported by the National Natural Science Foundation of China(No.51376095)the Jiangsu Province Environmental Research Projects(No.2014049)
文摘Based on the laser diffraction and Shifrin transform,the measurement method of particle size distribution has been improved extensively.While in real measurements,some noise peaks exist in the inversion data and are easily to be misread as particle distribution peaks.The improved method used a truncation function as a filter is hard to distinguish adjacent peaks.Here,by introducing the bimodal resolution criterion,the filter function is optimized,and to a quasi truncation function with the optimized filter function is studied to achieve optimal bimodal resolution and to remove noise peaks.This new quasi truncation function fits multimode distribution very well.By combining the quasi truncation function with Shifrin transform,noise peaks are removed well and the adjacent peaks are distinguished clearly.Finally,laser diffraction experiments are conducted and the particle size distribution is analyzed by adoping the method.The results show that the quasi truncation function has better bimodal resolution than the truncation function.Generally,by combining the quasi truncation function with the Shifrin transform,in particle size distribution measurements with laser diffraction,the bimodal resolution is greatly increased and the noise is removed well.And the results can restore the original distribution perfectly.Therefore,the new method with combination of the quasi truncation function and the Shifrin transform provides a feasible and effective way to measure the multimode particle size distribution by laser diffraction.
文摘On the basis of population balance a mathematical model is developed to describe the formation of polymer particle in styrene suspension polymerization. The characteristics of coalescence and breakage of droplets and the gel effect are analyzed in particular. Parameters of the models are estimated by experimental data on reaction conversion and particle size distribution. The results show that the model is suitable for predicting polymerization processes.
基金Indian Institute of Technology,Kharagpur in India for supporting this work
文摘Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast and accurate, is often expressed in terms of area function or number of particles. In this paper, a mass model is developed which converts the image obtained size distribution to mass-wise distribution, mak- ing it readily comparable to mechanical sieving data. The concept of weight/particle ratio is introduced for mass reconstruction from 2D images of particle aggregates. Using this mass model, the effects of several particle shape parameters (such as major axis, minor axis, and equivalent diameter) on sieve-size of the particles is studied. It is shown that the sieve-size of a particle strongly depend upon the shape param- eters, 91% of its variation being explained by major axis, minor axis, bounding box length and equivalent diameter. Furthermore, minor axis gives an overall accurate estimate of particle sieve-size, error in mean size (D-50) being just 0.4%. However, sieve-size of smaller particles (〈20 ram) strongly depends upon the length of the smaller arm of the bounding box enclosing them and sieve-sizes of larger particles (〉20 mm) are highly correlated to their equivalent diameters. Multiple linear regression analysis has been used to generate overall mass-wise particle size distribution, considering the influences of all these shape parameters on particle sieve-size. Multiple linear regression generated overall mass-wise particle size distribution shows a strong correlation with sieve generated data. The adjusted R-square value of the regression analysis is found to be 99 percent (w.r,t cumulative frequency). The method proposed in this paper provides a time-efficient way of producing accurate (up to 99%) mass-wise PSD using digital image processing and it can be used effectively to renlace the mechanical sieving.
基金Natural Science Foundation of China(41375156)Natural Science Foundation of Guangdong Province,China(S2013010013265)+2 种基金Special R&D fund for research institutes(2014EG137243)National Key Project of Basic Research(2011CB403403)Science and Technology Planning Project for Guangdong Province(2012A061400012)
文摘Particle number size distribution(PNSD) between 10 nm and 20 μm were measured in the Pearl River Delta(PRD) region in winter 2011.The average particle number concentration of the nucleation mode(10-20 nm),Aitken mode(20-100 nm),accumulation mode(100 nm-1μm) and coarse mode(1-20 μm) particles were 1 552,7 470,4 012,and 19 cm-3,respectively.The volume concentration of accumulation mode particles with peak at 300 nm accounted for over 70% of the total volume concentration.Diurnal variations and dependencies on meteorological parameters of PNSD were investigated.The diurnal variation of nucleation mode particles was mainly influenced by new particle formation events,while the diurnal variation of Aitken mode particles correlated to the traffic emission and the growth process of nucleation mode particles.When the PRD region was controlled by a cold high pressure,conditions of low relative humidity,high wind speed and strong radiation are favorable for the occurrence of new particle formation(NPF) events.The frequency of occurrence of NPF events was 21.3% during the whole measurement period.Parameters describing NPF events,including growth rate(GR) and source rate of condensable vapor(Q),were slightly larger than those in previous literature.This suggests that intense photochemical and biological activities may be the source of condensable vapor for particle growth,even during winter in the PRD.
文摘The effect of particle size distribution of alumina has been investigated for silica-free tabular alumina low cement castables( LCC). Three different combinations of alumina have been included in the matrix formulation of the castables. All the three combinations are composed of a bimodal reactive alumina and a fine ground monomodal reactive alumina. The first A1 and second A2 combinations are respectively composed of bimodal and monomodal aluminas from Alteo,with a different fine /coarse particles ratio for the bimodal alumina. The two Alteo combinations have been compared with a third combination C composed of a bimodal commercially available grade and a monomodal commercially available grade. Optimization of particle size packing has been performed for the three different formulations using the Dinger and Funk model. With this optimization,the two formulations based on Alteo material( PFR,PBR and PFR40) achieve the same level of performance in applicative tests( flowability,cold physical properties,mechanical resistance,crystalline phases,thermal shocks and corrosion) as reference solutions on the market.