期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
Pickering emulsion transport in skeletal muscle tissue:A dissipative particle dynamics simulation approach
1
作者 Xuwei Liu Wei Chen +3 位作者 Yufei Xia Guanghui Ma Reiji Noda Wei Ge 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期65-75,共11页
Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex i... Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex intercellular interactions of deformable Pickering emulsions,has been surprisingly sparse.This gap in knowledge holds significant potential for enhancing vaccine efficacy.This study aims to address this by summarizing the process of lymph-node-targeting transport and introducing a dissipative particle dynamics simulation method to evaluate the dynamic processes within cell tissue.The transport of Pickering emulsions in skeletal muscle tissue is specifically investigated as a case study.Various factors impacting the transport process are explored,including local cellular tissue environmental factors and the properties of the Pickering emulsion itself.The simulation results primarily demonstrate that an increase in radial repulsive interaction between emulsion particles can decrease the transport efficiency.Additionally,larger intercellular gaps also diminish the transport efficiency of emulsion droplet particles due to the increased motion complexity within the intricate transport space compared to a single channel.This study sheds light on the nuanced interplay between engineered and biological systems influencing the transport dynamics of Pickering emulsions.Such insights hold valuable potential for optimizing transport processes in practical biomedical applications such as drug delivery.Importantly,the desired transport efficiency varies depending on the specific application.For instance,while a more rapid transport might be crucial for lymph-node-targeted drug delivery,certain applications requiring a slower release of active components could benefit from the reduced transport efficiency observed with increased particle repulsion or larger intercellular gaps. 展开更多
关键词 Pickering emulsion Skeletal muscular cells Transport phenomena Dissipative particle dynamics Drug delivery
下载PDF
Two-dimensional non-selfsimilar initial value problem for adhesion particle dynamics 被引量:1
2
作者 孙文华 盛万成 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第9期1191-1198,共8页
A two-dimensional non-selfsimilar initial value problem for adhesion particle dynamics with two pieces of constant states separated by a circular ring is considered. By using the generalized characteristic method and ... A two-dimensional non-selfsimilar initial value problem for adhesion particle dynamics with two pieces of constant states separated by a circular ring is considered. By using the generalized characteristic method and the generalized Rankine-Hugoniot relation, which is a system of ordinary equations, the global solution which includes delta-shock waves and vacuum is constructed. 展开更多
关键词 Adhesion particle dynamics generalized Rankine-Hugoniot relation en-tropy condition delta-shock VACUUM
下载PDF
Dissipative particle dynamics simulation of flow through periodic arrays of circular micropillar 被引量:1
3
作者 Luwen ZHOU Yuqian ZHANG +1 位作者 Xiaolong DENG Moubin LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第11期1431-1440,共10页
Flow through arrays of micropillar embedded inside microfluidic chip systems is important for various microfluidic devices. It is critical to accurately predict the mass flow rate through pillar arrays based on the pi... Flow through arrays of micropillar embedded inside microfluidic chip systems is important for various microfluidic devices. It is critical to accurately predict the mass flow rate through pillar arrays based on the pillar design. This work presents a dissipative particle dynamics (DPD) model to simulate a problem of flow across periodic arrays of circular micropillar and investigates the permeability of two types of micropillar arrays. The flow fields including horizontal and vertical velocity fields, the number density field, and the streamline of the flow are analyzed. The predicted solid volumes by the presented DPD simulation of both types of arrays are quite close to the actual counterparts. These quantitative agreements show usefulness and effectiveness of the DPD model in simulating arrays of micropillar. By comparing two types of micropillar arrangement patterns, we find that the arrangement pattern of micropillar does not have significant influence on the permeability of the array. 展开更多
关键词 array of micropillar PERMEABILITY dissipative particle dynamics (DPD)
下载PDF
A note on hydrodynamics from dissipative particle dynamics
4
作者 X. BIAN Z. LI N.A. ADAMS 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第1期63-82,共20页
We calculate current correlation functions (CCFs) of dissipative particle dy- namics (DPD) and compare them with results of molecular dynamics (MD) and solutions of linearized hydrodynamic equations. In particul... We calculate current correlation functions (CCFs) of dissipative particle dy- namics (DPD) and compare them with results of molecular dynamics (MD) and solutions of linearized hydrodynamic equations. In particular, we consider three versions of DPD, the empirical/classical DPD, coarse-grained (CG) DPD with radial-direction interactions only and full (radial, transversal, and rotational) interactions between particles. To fa- cilitate quantitative discussions, we consider specifically a star-polymer melt system at a moderate density. For bonded molecules, it is straightforward to define the CG variables and to further derive CG force fields for DPD within the framework of the Mori-Zwanzig formalism. For both transversal and longitudinal current correlation functions (TCCFs and LCCFs), we observe that results of MD, DPD, and hydrodynamic solutions agree with each other at the continuum limit. Below the continuum limit to certain length scales, results of MD deviate significantly from hydrodynamic solutions, whereas results of both empirical and CG DPD resemble those of MD. This indicates that the DPD method with Markovian force laws possibly has a larger applicability than the continuum description of a Newtonian fluid. This is worth being explored further to represent gen- eralized hydrodynamics. 展开更多
关键词 dissipative particle dynamics (DPD) fluctuating hydrodynamics molec-ular dynamics (MD) COARSE-GRAINING Mori-Zwanzig projection
下载PDF
A new model for dissipative particle dynamics boundary condition of walls with different wettabilities
5
作者 Yuyi WANG Jiangwei SHE Zhewei ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第4期467-484,共18页
The implementation of solid-fluid boundary condition has been a major challenge for dissipative particle dynamics(DPD)method.Current implementations of boundary conditions usually try to approach a uniform density dis... The implementation of solid-fluid boundary condition has been a major challenge for dissipative particle dynamics(DPD)method.Current implementations of boundary conditions usually try to approach a uniform density distribution and a velocity profile close to analytical solution.The density oscillations and slip velocity are intentionally eliminated,and different wall properties disappear in the same analytical solution.This paper develops a new wall model that combines image and frozen particles and a new strategy to emphasize different wall properties especially wettabilities.The strategy first studies the realistic wall-fluid system by molecular dynamics(MD)simulation depending on physical parameters.Then,a DPD simulation is used to match the density and velocity profiles with the new wall model.The obtained DPD parameters can simulate the systems with the same wall and fluid materials.With this method,a simulation of the Poiseuille flow of liquid argon with copper walls is presented.Other walls with super-hydrophilic,hydrophilic,and hydrophobic wettabilities are also simulated.The limitations of the analytical solution and the effect of the wall-fluid interaction are discussed.The results show that the method suggested in this paper can simulate the mesoscale behavior of the microchannel flow related to realistic systems. 展开更多
关键词 dissipative particle dynamics(DPD) molecular dynamics(MD) wall-fluid interaction image particle WETTABILITY
下载PDF
Effect of shear on the symmetric diblock copolymer/nanorod mixture:A dissipative particle dynamics study
6
作者 何林李 张瑞芬 季永运 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第8期549-559,共11页
The phase behaviours of a lamellar diblock copolymer/nanorod composite under steady shear are investigated using dissipative particle dynamics. We consider a wide range of nanorod concentrations, where the nanorods ea... The phase behaviours of a lamellar diblock copolymer/nanorod composite under steady shear are investigated using dissipative particle dynamics. We consider a wide range of nanorod concentrations, where the nanorods each have a preferential affinity to one of the blocks. Our results suggest that shear not only aligns the orientations of the diblock eopolymer templates and nanorods towards flow direction, but also regulates the distribution of the nanorods within the polymer matrix. Meanwhile, the shear-induced reorientation and morphology transitions of the systems also significantly depend on the nanorod concentration. At certain nanorod concentrations, the competitions between shearinduced polymer thinning and nanorods dispersion behaviours determine the phase behaviours of the composites. For high nanorod concentrations, no morphology transition is observed, but reorientation is present, in which the sheared nanorods are arranged into hexagonal packing arrays. Additionally, the orientation behaviour of nanorods is determined directly by the applied shear, also interfered with by the shear-stretched copolymer molecules. 展开更多
关键词 dissipative particle dynamics SHEAR NANOCOMPOSITES ORIENTATION
下载PDF
Utilizing ^(234)Th/^(238)U disequilibrium to constrain particle dynamics in hydrothermal plumes in the Southwest Indian Ocean
7
作者 Weifeng Yang Xinxing Zhang +2 位作者 Min Chen Ziming Fang Yusheng Qiu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第6期16-25,共10页
Metal-enriched minerals have been widely observed near hydrothermal vent fields.However,the dynamics of particulate metals influenced by hydrothermal activities is poorly constrained.Here,radioactive 234Th in both dis... Metal-enriched minerals have been widely observed near hydrothermal vent fields.However,the dynamics of particulate metals influenced by hydrothermal activities is poorly constrained.Here,radioactive 234Th in both dissolved and particulate phases were used to examine the kinetics of particle-reactive metal adsorption,removal,and residence in a newly found hydrothermal plume over the Southwest Indian Ridge.The results showed a relatively low value on ^(234)Th/^(238)U ratios(i.e.,0.73-0.88)compared to the deep oceans,indicating an enhanced adsorption of particle-reactive metals onto particulate matter in the plume.Based on the 234Th-238U disequilibria,the adsorption and sinking rate constants of 234Th averaged(0.009±0.001)d^(-1) and(0.113±0.024)d^(-1) in the hydrothermal plume,corresponding to the residence times of(115±19)d and(16±5)d for dissolved and particulate 234Th,respectively.This timescale allows vent-discharged particle-reactive metals to disperse hundreds to thousands of miles away.Thus,hydrothermal activities might influence the metal distribution in deep ocean over a very large scope.Also,a high sinking flux of(36.2±5.4)B q/(m^(2)·d)for 234Th was observed for the plume,suggesting an enrichment of metal in particles deposited close to the vent.The enhancement of particle sinking could also benefit the transport of organic carbon and nitrogen and fuel the benthic ecosystems under the plume regimes.Thus,hydrothermal plumes may have an impact on both the elemental geochemistry and/or ecosystem to the deep oceans interior than previous expectation. 展开更多
关键词 thorium-234 particle dynamics hydrothermal plume Indian Ocean
下载PDF
Many-body dissipative particle dynamics with energy conservation:temperature-dependent long-term attractive interaction
8
作者 Jie LI Kaixuan ZHANG +3 位作者 Chensen LIN Lanlan XIAO Yang LIU Shuo CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第4期497-506,共10页
Heat and mass transfer during the process of liquid droplet dynamic behaviors has attracted much attention in decades.At mesoscopic scale,numerical simulations of liquid droplets motion,such as impacting,sliding,and c... Heat and mass transfer during the process of liquid droplet dynamic behaviors has attracted much attention in decades.At mesoscopic scale,numerical simulations of liquid droplets motion,such as impacting,sliding,and coalescence,have been widely studied by using the particle-based method named many-body dissipative particle dynamics(MDPD).However,the detailed information on heat transfer needs further description.This paper develops a modified MDPD with energy conservation(MDPDE)by introducing a temperature-dependent long-term attractive interaction.By fitting or deriving the expressions of the strength of the attractive force,the exponent of the weight function in the dissipative force,and the mesoscopic heat friction coefficient about temperature,we calculate the viscosity,self-diffusivity,thermal conductivity,and surface tension,and obtain the Schmidt number Sc,the Prandtl number P r,and the Ohnesorge number Oh for 273 K to 373 K.The simulation data of MDPDE coincide well with the experimental data of water,indicating that our model can be used to simulate the dynamic behaviors of liquid water.Furthermore,we compare the equilibrium contact angle of droplets wetting on solid surfaces with that calculated from three interfacial tensions by MDPDE simulations.The coincident results not only stand for the validation of Young’s equation at mesoscale,but manifest the reliability of our MDPDE model and applicability to the cases with free surfaces.Our model can be extended to study the multiphase flow withcomplex heat and mass transfer. 展开更多
关键词 surface tension Young’s equation equilibrium contact angle many-body dissipative particle dynamics with energy conservation(MDPDE)
下载PDF
Polymer translocation through nanopore under external electric field:dissipative particle dynamics study
9
作者 Jinglin MAO Yi YAO +1 位作者 Zhewei ZHOU Guohui HU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第12期1581-1592,共12页
The DNA sequencing technology has achieved a leapfrog development in recent years. As a new generation of the DNA sequencing technology, nanopore sequenc- ing has shown a broad application prospect and attracted vast ... The DNA sequencing technology has achieved a leapfrog development in recent years. As a new generation of the DNA sequencing technology, nanopore sequenc- ing has shown a broad application prospect and attracted vast research interests since it was proposed. In the present study, the dynamics of the electric-driven translocation of a homopolymer through a nanopore is investigated by the dissipative particle dynam- ics (DPD), in which the homopolymer is modeled as a worm-like chain (WLC). The DPD simulations show that the polymer chain undergoes conformation changes during the translocation process. The different structures of the polymer in the translocation process, i.e., single-file, double folded, and partially folded, and the induced current block- ades are analyzed. It is found that the current blockades have different magnitudes due to the polymer molecules traversing the pore with different folding conformations. The nanoscale vortices caused by the concentration polarization layers (CPLs) in the vicinity of the sheet are also studied. The results indicate that the translocation of the polymer has the effect of eliminating the vortices in the polyelectrolyte solution. These findings are expected to provide the theoretical guide for improving the nanopore sequencing tech- nique. 展开更多
关键词 nanopore sequencing technology electric-driven translocation dissipative particle dynamics (DPD)
下载PDF
Discussions on the correspondence of dissipative particle dynamics and Langevin dynamics at small scales
10
作者 D. AZARNYKH S. LITVINOV +1 位作者 X. BIAN N.A. ADAMS 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第1期31-46,共16页
We investigate the behavior of dissipative particle dynamics (DPD) within different scaling regimes by numerical simulations. The paper extends earlier analytical findings of Ripoll, M., Ernst, M. H., and Espafiol, ... We investigate the behavior of dissipative particle dynamics (DPD) within different scaling regimes by numerical simulations. The paper extends earlier analytical findings of Ripoll, M., Ernst, M. H., and Espafiol, P. (Large scale and mesoscopic hy- drodynamics for dissipative particle dynamics. Journal of Chemical Physics, 115(15), 7271-7281 (2001)) by evaluation of numerical data for the particle and collective scaling regimes and the four different subregimes. DPD simulations are performed for a range of dynamic overlapping parameters. Based on analyses of the current auto-correlation functions (CACFs), we demonstrate that within the particle regime at scales smaller than its force cut-off radius, DPD follows Langevin dynamics. For the collective regime, we show that the small-scale behavior of DPD differs from Langevin dynamics. For the wavenumber-dependent effective shear viscosity, universal scaling regimes are observed in the microscopic and mesoscopic wavenumber ranges over the considered range of dynamic overlapping parameters. 展开更多
关键词 dissipative particle dynamics (DPD) mesoscopic dynamics fluctuating hydrodynamics
下载PDF
Temperature dependence of microscopic properties in diblock copolymer films:A dissipative particle dynamics simulation
11
作者 徐毅 冯剑 +3 位作者 宋小瑜 王勇 陈捷 朱宪 《Journal of Shanghai University(English Edition)》 CAS 2010年第4期255-261,共7页
Temperature dependence of microscopic properties in diblock copolymer films has been investigated by dissipative particle dynamics simulations. Results show the relation between mean-square bond length (MSBL) and sy... Temperature dependence of microscopic properties in diblock copolymer films has been investigated by dissipative particle dynamics simulations. Results show the relation between mean-square bond length (MSBL) and system temperature can be described as a quadratic curve. The root-mean-square radius of gyration (RMSGR) and end-end distance (RMSED) increase gradually as the temperature rises and composition fraction changes from 0.1 to 0.5, in which the effect of the former is primary. Especially, the relation between RMSGR and temperature is nearly linear in the confinement-introduced direction. Density distribution of each component in the films can be controlled and adjusted effectively by its interaction with other components and boundaries. Moreover, the changes of system temperature and composition fraction can both affect the density distributions to a certain extent. 展开更多
关键词 diblock copolymer films microscopic properties dissipative particle dynamics
下载PDF
Particle dynamics revealed by^(210)Po/^(210)Pb disequilibria around Prydz Bay,the Southern Ocean in summer
12
作者 CHEN Mengya CHEN Min +3 位作者 ZHENG Minfang QIU Yusheng ZHU Jing QIAN Qiankun 《Advances in Polar Science》 CSCD 2022年第1期71-85,共15页
Seawater samples were collected around Prydz Bay in summer of 2014,dissolved and particulate^(210)Po and^(210)Pb were measured to reveal the disequilibrium characteristics and particle dynamics.Our results show that t... Seawater samples were collected around Prydz Bay in summer of 2014,dissolved and particulate^(210)Po and^(210)Pb were measured to reveal the disequilibrium characteristics and particle dynamics.Our results show that the distribution of^(210)Po and^(210)Po/^(210)Pb activity ratio in the upper water is mainly affected by biological absorption or particle adsorption.An abnormal excess of^(210)Po relative to^(210)Pb was observed in the surface water at stations P1-2 and P2-2,which is likely to be the horizontal transport of water mass with high DPo/DPb)_(A.R.)and TPo/TPb)_(A.R.).In this study,the removal of particulate^(210)Po is mainly controlled by the scavenging of dissolved^(210)Po and the two have a linear positive correlation with the salinity,a negative linear correlation with the content of dissolved oxygen and a reciprocal relationship with the content of POC.The export flux of POC at 100 m is estimated to be 1.8-4.4 mmol·m^(−2)·d^(−1)(avg.2.9 mmol·m^(−2)·d^(−1))based on^(210)Po/^(210)Pb disequilibria,with the highest value in the shelf,which is consistent with the distribution of biological productivity. 展开更多
关键词 ^(210)Po/^(210)Pb disequilibria ^(210)Po excess particle dynamics POC export Prydz Bay
下载PDF
Stable and accurate schemes for smoothed dissipative particle dynamics
13
作者 G. FAURE G. STOLTZ 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第1期83-102,共20页
Smoothed dissipative particle dynamics (SDPD) is a mesoscopic particle method that allows to select the level of resolution at which a fluid is simulated. The numerical integration of its equations of motion still s... Smoothed dissipative particle dynamics (SDPD) is a mesoscopic particle method that allows to select the level of resolution at which a fluid is simulated. The numerical integration of its equations of motion still suffers from the lack of numerical schemes satisfying all the desired properties such as energy conservation and stability. Similarities between SDPD and dissipative particle dynamics with energy (DPDE) con- servation, which is another coarse-grained model, enable adaptation of recent numerical schemes developed for DPDE to the SDPD setting. In this article, a Metropolis step in the integration of the fluctuation/dissipation part of SDPD is introduced to improve its stability. 展开更多
关键词 smoothed dissipative particle dynamics (SDPD) numerical integration Metropolis algorithm
下载PDF
Statics,Dynamics and Linear Viscoelasticity from Dissipative Particle Dynamics Simulation of Entangled Linear Polymer Melts 被引量:1
14
作者 Fan Wang Lu-Kun Feng +1 位作者 Ye-Di Li Hong-Xia Guo 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第9期1392-1409,I0007,共19页
Dissipative particle dynamics(DPD)with bond uncrossability shows a great potential in studying entangled polymers,however relatively little is known of applicability range of entangled DPD model to be use as a model f... Dissipative particle dynamics(DPD)with bond uncrossability shows a great potential in studying entangled polymers,however relatively little is known of applicability range of entangled DPD model to be use as a model for ideal chains and properly describe the full dynamics of entangled melts.Therefore,we perform a comprehensive study on structure,dynamics and linear viscoelasticity of a typical DPD entangled model system,semiflexible linear polymer melt.These polymers obey Flory's ideality hypothesis in chain dimensions,but their local structure exhibits nonideal behavior due to weak correlated hole effect.Both monomer motion and viscoelasticity relaxation reproduce the full pictures as predicted by reptation theory.The stronger chain length dependent diffusion coefficient and relaxation time as well as dynamic moduli are in close agreement with predictions of modern tube model that accounts for additional relaxation mechanisms besides chain reptation.However,an anomalous sub-diffusive center of mass motion is observed both before and after the intermediate reptation regime and the cross-correlation between chains is not negligible even these polymers obey stress-optical law,indicating limitations of the reptation theory.Hence semiflexible linear entangled DPD model can correctly describe statics and dynamics of entangled polymer melts. 展开更多
关键词 Entangled polymer melts dynamics Linear viscoelasticity Dissipative particle dynamics
原文传递
Estimation of particle dynamics in 2-D fluidized beds using particle tracking velocimetry 被引量:6
15
作者 Thomas Hagemeier Christoph Roloff +1 位作者 Andreas Buck Evangelos Tsotsas 《Particuology》 SCIE EI CAS CSCD 2015年第5期39-51,共13页
The experimental characterization of particle dynamics in fluidized beds is of great importance in fostering an understanding of solid phase motion and its effect on particle properties in granulation processes, Commo... The experimental characterization of particle dynamics in fluidized beds is of great importance in fostering an understanding of solid phase motion and its effect on particle properties in granulation processes, Commonly used techniques such as particle image velocimetry rely on the cross-correlation of illumination intensity and averaging procedures. It is not possible to obtain single particle velocities with such techniques. Moreover, the estimated velocities may not accurately represent the local particle velocities in regions with high velocity gradients. Consequently, there is a need for devices and methods that are capable of acquiring individual particle velocities. This paper describes how particle tracking velocimetry can be adapted to dense particulate flows. The approach presented in this paper couples high-speed imaging with an innovative segmentation algorithm for particle detection, and employs the Voronoi method to solve the assignment problem usually encountered in densely seeded fows. Lagrangian particle tracks are obtained as primary information, and these serve as the basis for calculating sophisticated quantities such as the solid-phase flow field, granular temperature, and solid volume fraction. We show that the consistency of individual trajectories is sufficient to recognize collision events. 展开更多
关键词 particle dynamics particle tracking velocimetry Pseudo-2D Fluidized bed
原文传递
Morphologies of diblock copolymer confined in a slit with patterned surfaces studied by dissipative particle dynamics
16
作者 FENG Jian HUANG Yongmin +1 位作者 LIU Honglai HU Ying 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2007年第2期132-139,共8页
Diblock copolymers with ordered mesophase structures have been used as templates for nano-fabrication.Unfortunately,the ordered structure only exists at micrometer-scale areas,which precludes its use in many advanced ... Diblock copolymers with ordered mesophase structures have been used as templates for nano-fabrication.Unfortunately,the ordered structure only exists at micrometer-scale areas,which precludes its use in many advanced applications.To overcome this disadvantage,the diblock copolymer confined in a restricted system with a patterned surface is proved to be an effective means to prohibit the formation of defects and obtain perfect ordered domains.In this work,the morphologies of a thin film of diblock copo-lymer confined between patterned and neutral surfaces were studied by dissipative particle dynamics.It is shown that the morphology of the symmetric diblock copolymer is affected by the ratio of the pattern period on the surface to the lamellar period of the symmetric diblock copolymer and by the repul-sion parameters between blocks and wall particles.To elimi-nate the defects in the lamellar phase,the pattern period on the surface must match the lamellar period.The difference in the interface energy of different compartments of the pattern should increase with increasing film thickness.The pattern period on the surface has a scaling relationship with the chain length,which is the same as that between the lamellar period and the chain length.The lamellar period is also affected by the polydispersity of the symmetric diblock copolymer.The total period is the average of the period of each component multiplied by the weight of its volume ratio.The morpholo-gies of asymmetric diblock copolymers are also affected by the pattern on the surface,especially when the matching period of the asymmetric diblock copolymer is equal to the pattern period,which is approximately equal to the lamellar period of a symmetric diblock copolymer with the same chain length. 展开更多
关键词 diblock copolymer restricted system dissipa-tive particle dynamics polydispersity of diblock copolymer
原文传递
Dissipative Particle Dynamics Study on Aggregation of MPEG- PAE-PLA Block Polymer Micelles Loading Doxorubicine
17
作者 杨楚芬 孙尧 +3 位作者 章莉娟 朱国典 张灿阳 钱宇 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2012年第9期1980-1986,共7页
To guide the molecular design of the pH-sensitive triblock amphiphilic polymer MPEG-PAE-PLA and the for- mula design of its doxorubicine (DOX)-loaded micelles, dissipative particle dynamics (DPD) simulations are e... To guide the molecular design of the pH-sensitive triblock amphiphilic polymer MPEG-PAE-PLA and the for- mula design of its doxorubicine (DOX)-loaded micelles, dissipative particle dynamics (DPD) simulations are em- ployed to investigate the aggregation behaviors of the DOX-loaded micelles. The simulation results showed that the aggregate morphologies of micelles and DOX distribution are influenced by degree of polymerization of blocks, and the proposed structure of polymer is MPEG44-PAE3-PLA4. With different contents of polymer or DOX, differ- ent aggregate morphologies of the micelles, like microsphere, spindle/column, reticulation or lamella are observed. To prepare the micro-spherical DOX-loaded micelles, the polymer content is proposed as 10%--15%, and the DOX content less than 10%. 展开更多
关键词 dissipative particle dynamics pH-sensitive polymer amphiphilic polymer drug-loaded micelles
原文传递
Dissipative Particle Dynamics Simulation of Onion Phase in Star-block Copolymer
18
作者 WUShao-gui DU Ting-ting 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2013年第1期171-176,共6页
A dissipative particle dynamics simulation technique was used to investigate the effect of molecular architecture of star-block copolymer on the patterned structure in a nanodroplet. With increasing the ratio of solvo... A dissipative particle dynamics simulation technique was used to investigate the effect of molecular architecture of star-block copolymer on the patterned structure in a nanodroplet. With increasing the ratio of solvophilic to block length to solvophobic block length(RwT), solvophobic sphere, ordered hexagonal phase, onion phase, perforated onion phase and flocculent phase are formed, respectively. Since onion phase has potential application in controlled drug release, it has received wide attention experimentally and theoretically. Our simulation indicates onion phase forms at a certain RH/T(close to but less than 1). A star-block copolymer molecule has two conformations in onion phase: either fully located in a shell or shared by two neighboring shells. Central structure affects onion's final shape. The molecular number of the copolymer in each shell is a quadratic function of the shell's radius. The arm number of star-block copolymer has little influence on onion's structure, but slightly affects the solvent content. Additionally, we studied the influence of arm length on onion's structure. 展开更多
关键词 Star-block copolymer Dissipative particle dynamics Onion phase
原文传递
Many-body dissipative particle dynamics simulation of wetting phenomena
19
作者 Ying ZHAO Ye YUE +2 位作者 Xianren ZHANG Shuangyang LI Atul SAJJANHAR 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2010年第3期280-282,共3页
With the development of the simulation of particle dynamics,the traditional dissipative particle dynamics(DPD)method can not satisfy the needs of research in static or dynamic wetting phenomena.However,the Many-body D... With the development of the simulation of particle dynamics,the traditional dissipative particle dynamics(DPD)method can not satisfy the needs of research in static or dynamic wetting phenomena.However,the Many-body DPD approach extends the ability of the traditional method to simulate the interface between solid and liquid or some other situation.In this paper,we propose a Many-body DPD program to simulate the solidliquid interface and get satisfactory results. 展开更多
关键词 wetting phenomena many-body dissipative particle dynamics
原文传递
Modeling of gas-solid flow in a CFB riser based on computational particle fluid dynamics 被引量:6
20
作者 Zhang Yinghui Lan Xingying Gao Jinsen 《Petroleum Science》 SCIE CAS CSCD 2012年第4期535-543,共9页
A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior ... A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior inside a circulating fluidized bed riser operating at various superficial gas velocities and solids mass fluxes in two fluidization regimes,a dilute phase transport(DPT) regime and a fast fluidization(FF) regime.The simulation results were evaluated based on comparison with experimental data of solids velocity and holdup,obtained from non-invasive automated radioactive particle tracking and gamma-ray tomography techniques,respectively.The agreement of the predicted solids velocity and holdup with experimental data validated the CPFD model for the CFB riser.The model predicted the main features of the gas-solid flows in the two regimes;the uniform dilute phase in the DPT regime,and the coexistence of the dilute phase in the upper region and the dense phase in the lower region in the FF regime.The clustering and solids back mixing in the FF regime were stronger than those in the DPT regime. 展开更多
关键词 Gas-solid flow circulating fluidized bed computational particle fluid dynamics modeling HYDROdynamics
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部