期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
CFD-DEM-VDGM method for simulation of particle fluidization behavior in multi-ring inclined-hole spouted fluidized bed 被引量:1
1
作者 Meng Chen Zhao Chen +2 位作者 Ming Gong Yaping Tang Malin Liu 《Particuology》 SCIE EI CAS CSCD 2021年第4期112-126,共15页
The simulation of particle fluidization behavior in a complex geometry with a large number of particles is challenging owing to the complexity of unstructured computational grids and high computational intensity.In th... The simulation of particle fluidization behavior in a complex geometry with a large number of particles is challenging owing to the complexity of unstructured computational grids and high computational intensity.In this study,a virtual dual-grid model(VDGM)is proposed to calculate the solid volume fraction in unstructured grids and speed up the calculation.The VDGM is coupled with a computational fluid dynamics-discrete element method model to simulate particle fluidization behavior in a multi-ring inclined-hole spouted fluidized bed with 4.2 million particles under a high temperature of 1423 K.A computational fluid dynamics-discrete element method-virtual dual-grid model(CFD-DEM-VDGM)coupling model is implemented based on commercial software Fluent and EDEM.The time step settings in Fluent and EDEM and the pattern of particle data transfer in Fluent are improved to speed up the calculation.It is discovered that the VDGM can calculate the solid volume fraction in unstructured grids of complex geometry and speed up the calculation effectively.The calculation speed increased by more than 10 times compared with that of the segmentation sampling method.The new pattern of particle data transfer in Fluent can reduce data transfer time by more than 90%.The fluidization behavior of 4.2 million high-density particles in the multi-ring inclined-hole spouted fluidized bed is obtained and analyzed in detail.The CFD-DEM-VDGM coupling method is validated for the bed expansion height and spouting cycle time in a spouted fluidized bed via experimental results. 展开更多
关键词 Virtual dual-grid model CFD-DEM-VDGM Spouted fluidized bed Unstructured grids particle fluidization
原文传递
FOULING PREVENTION WITH FLUIDIZED PARTICLES IN EVAPORATION OF TRADITIONAL CHINESE MEDICINE EXTRACT 被引量:3
2
作者 MingyanLiu XiulunLi +3 位作者 RuitaiLin WandaNie RuchengZhang NingshengLing 《China Particuology》 SCIE EI CAS CSCD 2004年第2期81-83,共3页
The present investigation shows that comparing with the evaporation of vapor-liquid two-phase flow boiling system, heat transfer is enhanced by adding proper inert solid particles into the traditional Chinese medicine... The present investigation shows that comparing with the evaporation of vapor-liquid two-phase flow boiling system, heat transfer is enhanced by adding proper inert solid particles into the traditional Chinese medicine liquid which is under evaporation. As a result, fouling prevention effects are evident in such three-phase flow boiling evaporator. 展开更多
关键词 fouling prevention fluidized particles EVAPORATION traditional Chinese medicine liquid
原文传递
Fluidization of nano and sub-micron powders using mechanical vibration 被引量:7
3
作者 Souresh Kaliyaperumal Shahzad Barghi +2 位作者 Lauren Briens Sohrab Rohani Jesse Zhu 《Particuology》 SCIE EI CAS CSCD 2011年第3期279-287,共9页
The fluidization behavior of nano and sub-micron powders belonging to group C of Geldart's classification was studied in a mechanically vibrated fluidized bed (vibro-fluidized bed) at room temperature. Pretreated a... The fluidization behavior of nano and sub-micron powders belonging to group C of Geldart's classification was studied in a mechanically vibrated fluidized bed (vibro-fluidized bed) at room temperature. Pretreated air was used as the fluidizing gas whereas SiO2. Al2O3, TiO2, ZrSi, BaSO4 were solid particles. Mechanical vibration amplitudes were 0.1, 0.25, 0.35, 0.45mm, while the frequencies were 5, 20, 30, 40 Hz to investigate the effects of frequency and amplitude of mechanical vibration on minimum fluidization velocity, bed pressure drop, bed expansion, and the agglomerate size and size distribution, A novel technique was employed to determine the apparent minimum fluidization velocity from pressure drop signals. Richardson-Zaki equation was employed as nano-particles showed fluid like behavior when fluidized. The average size of agglomerates formed on top of the bed was smaller than those at the bottom, Size distribution of agglomerates on top was also more uniform compared to those near the distributor. Larger agglomerates at the bottom of the bed formed a small fraction of the bed particles. Average size of submicron agglomerates decreased with increasing the frequency of vibration, however nano particles were less sensitive to change in vibration frequency. Mechanical vibration enhanced the quality of fluidization by reducing channeling and rat-holing phenomena caused by interparticle cohesive forces. 展开更多
关键词 fluidization Nanoparticles Submicron particle Vibro-fluidized bed Minimum fluidization velocity Agglomeration
原文传递
Modeling of particle transport and combustion phenomena in a large-scale circulating fluidized bed boiler using a hybrid Euler-Lagrange approach 被引量:7
4
作者 Wojciech P.Adamczyk Gabriel Wecel +3 位作者 Marcin Klajny Pawel Kozolub Adam Klimanek Ryszard A.Bialecki 《Particuology》 SCIE EI CAS CSCD 2014年第5期29-40,共12页
The constantly developing fiuidized combustion technology has become competitive with a conventional pulverized coal (PC) combustion. Circulating fluidized bed (CFB) boilers can be a good alternative to PC boilers... The constantly developing fiuidized combustion technology has become competitive with a conventional pulverized coal (PC) combustion. Circulating fluidized bed (CFB) boilers can be a good alternative to PC boilers due to their robustness and lower sensitivity to the fuel quality. However, appropriate engineering tools that can be used to model and optimize the construction and operating parameters of a CFB boiler still require development. This paper presents the application of a relatively novel hybrid Euler-Lagrange approach to model the dense gas-solid flow combined with a combustion process in a large-scale indus- trial CFB boiler. In this work, this complex flow has been resolved by applying the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) code. To accurately resolve the multiphase flow, the original CFD code has been extended by additional user-defined functions. These functions were used to control the boiler mass load, particle recirculation process (simplified boiler geometry), and interphase hydrodynamic properties. This work was split into two parts. In the first part, which is referred to as pseudo combustion, the combustion process was not directly simulated. Instead, the effect of the chemi- cal reactions was simulated by modifying the density of the continuous phase so that it corresponded to the mean temperature and composition of the flue gases, In this stage, the particle transport was simu- lated using the standard Euler-Euler and novel hybrid Euler-Lagrange approaches, The obtained results were compared against measured data, and both models were compared to each other. In the second part, the numerical model was enhanced by including the chemistry and physics of combustion. To the best of the authors' knowledge, the use of the hybrid Euler-Lagrange approach to model combustion is a new engineering application of this model, In this work, the combustion process was modeled for air-fuel combustion. The simulation results were compared with experimental data. The performed numerical simulations showed the applicability of the hybrid dense discrete phase model approach to model the combustion process in large-scale industrial CFB boilers. 展开更多
关键词 CFB fluidization Combustion particles Large boile rCFD
原文传递
Comparison of the standard Euler-Euler and hybrid Euler-Lagrange approaches for modeling particle transport in a pilot-scale circulating fluidized bed 被引量:14
5
作者 Wojciech P.Adamczyk Adam Klimanek +3 位作者 Ryszard A.Biaecki Gabriel Wecel Pawe Kozolub Tomasz Czakiert 《Particuology》 SCIE EI CAS CSCD 2014年第4期129-137,共9页
Particle transport phenomena in small-scale circulating fiuidized beds (CFB) can be simulated using the Euler-Euler, discrete element method, and Euler-Lagrange approaches. In this work, a hybrid Euler-Lagrange mode... Particle transport phenomena in small-scale circulating fiuidized beds (CFB) can be simulated using the Euler-Euler, discrete element method, and Euler-Lagrange approaches. In this work, a hybrid Euler-Lagrange model known as the dense discrete phase model (DDPM), which has common roots with the multiphase particle-in-cell model, was applied in simulating particle transport within a mid-sized experimental CFB facility. Implementation of the DDPM into the commercial ANSYS Fluent CFD package is relatively young in comparison with the granular Eulerian model. For that reason, validation of the DDPM approach against experimental data is still required and is addressed in this paper. Additional difficulties encountered in modeling fluidization processes are connected with long calculation times. To reduce times, the complete boiler models are simplified to include just the combustion chamber. Such simplifications introduce errors in the predicted solid distribution in the boiler. To investigate the conse- quences of model reduction, simulations were made using the simplified and complete pilot geometries and compared with experimental data. All simulations were performed using the ANSYSFLUENT 14.0 package. A set of user defined functions were used in the hybrid DDPM and Euler-Euler approaches to recirculate solid particles. 展开更多
关键词 particle Multiphase flow CFD Particulate processes CFB Fluidized bed
原文传递
A new drag model for TFM simulation of gas-solid bubbling fluidized beds with Geldart-B particles 被引量:10
6
作者 Yingce Wang Zheng Zou +1 位作者 Hongzhong Li Qingshan Zhu 《Particuology》 SCIE EI CAS CSCD 2014年第4期151-159,共9页
In this work, a new drag model for TFM simulation in gas-solid bubbling fluidized beds was proposed, and a set of equations was derived to determine the meso-scale structural parameters to calculate the drag character... In this work, a new drag model for TFM simulation in gas-solid bubbling fluidized beds was proposed, and a set of equations was derived to determine the meso-scale structural parameters to calculate the drag characteristics of Geldart-B particles under low gas velocities. In the new model, the meso-scale structure was characterized while accounting for the bubble and meso-scale structure effects on the drag coefficient. The Fluent software, incorporating the new drag model, was used to simulate the fluidization behavior. Experiments were performed in a Plexiglas cylindrical fluidized bed consisting of quartz sand as the solid phase and ambient air as the gas phase. Comparisons based on the solids hold-up inside the fluidized bed at different superficial gas velocities, were made between the 2D Cartesian simulations, and the experimental data, showing that the results of the new drag model reached much better agreement with exoerimental data than those of the Gidasoow dra~ model did. 展开更多
关键词 fluidization Bubbling fluidized bed CFD Geldart-B particles Drag model
原文传递
Statistical and frequency analysis of the pressure fluctuation in a fluidized bed of non-spherical particles 被引量:7
7
作者 Honghao He Xiaofeng Lu +6 位作者 Wei Shuang Quanhai Wang Yinhu Kang Liyun Yan Xuanyu Ji Guangyu Luo Hai Liu 《Particuology》 SCIE EI CAS CSCD 2014年第5期178-186,共9页
In this paper, the pressure fluctuation in a fluidized bed was measured and processed via standard devia- tion and power spectrum analysis to investigate the dynamic behavior of the transition from the bubbling to tur... In this paper, the pressure fluctuation in a fluidized bed was measured and processed via standard devia- tion and power spectrum analysis to investigate the dynamic behavior of the transition from the bubbling to turbulent regime. Two types (Geldart B and D) of non-spherical particles, screened from real bed materials, and their mixture were used as the bed materials. The experiments were conducted in a semi- industrial testing apparatus. The experimental results indicated that the fluidization characteristics of the non-spherical Geldart D particles differed from that of the spherical particles at gas velocities beyond the transition velocity Uo The standard deviation of the pressure fluctuation measured in the bed increased with the gas velocity, while that measured in the plenum remained constant. Compared to the coarse particles, the fine particles exerted a stronger influence on the dynamic behavior of the fluidized bed and promoted the fluidization regime transition from bubbling toward turbulent. The power spectrum of the pressure fluctuation was calculated using the auto-regressive (AR) model; the hydrodynamics of the flu- idized bed were characterized by the major frequency of the power spectrum of the pressure fluctuation. By combining the standard deviation analysis, a new method was proposed to determine the transition velocity Uk via the analysis of the change in the major frequency. The first major frequency was observed to vary within the range of 1.5 to 3 Hz. 展开更多
关键词 Fluidized bed Non-spherical particles Pressure fluctuation Transition velocity
原文传递
Experimental and numerical investigation of liquid-solid binary fluidized beds: Radioactive particle tracking technique and dense discrete phase model simulations 被引量:3
8
作者 Varsha Jain Lipika Kalo +2 位作者 Deepak Kumar Harish J. Pant Rajesh K. Upadhyay 《Particuology》 SCIE EI CAS CSCD 2017年第4期112-122,共11页
Liquid-solid binary fluidized beds are widely used in many industries. However, the flow behavior of such beds is not well understood due to the lack of accurate experimental and numerical data. In the current study, ... Liquid-solid binary fluidized beds are widely used in many industries. However, the flow behavior of such beds is not well understood due to the lack of accurate experimental and numerical data. In the current study, the behavior of monodisperse and binary liquid-solid fluidized beds of the same density but dif- ferent sizes is investigated using radioactive particle tracking (RPT) technique and a dense discrete phase model (DDPM). Experiments and simulations are performed in monodisperse fluidized beds containing two different sizes of glass beads (0.6 and I mm) and a binary fluidized bed of the same particles for vari- ous bed compositions. The results show that both RPT and DDPM can predict the mixing and segregation pattern in liquid-solid binary fluidized beds. The mean velocity predictions of DDPM are in good agree- ment with the experimental findings for both monodisperse and binary fluidized beds. However, the axial root mean square velocity predictions are only reasonable for bigger particles. Particle-particle interac- tions are found to be critical for predicting the flow behavior of solids in liquid-solid binary fluidized beds. 展开更多
关键词 Binary bed Liquid-solid flow Fluidized bed Radioactive particle tracking Dense discrete phase model
原文传递
Flow-regime transitions in fluidized beds of non-spherical particles 被引量:4
9
作者 H. Kruggel-Emden K. Vollmari 《Particuology》 SCIE EI CAS CSCD 2016年第6期1-15,共15页
Fluidized beds frequently involve non-spherical particles, especially if biomass is present. For spheri- cal particles, numerous experimental investigations have been reported in the literature. In contrast, complex-s... Fluidized beds frequently involve non-spherical particles, especially if biomass is present. For spheri- cal particles, numerous experimental investigations have been reported in the literature. In contrast, complex-shaped particles have received much less attention. There is a lack of understanding of how par- ticle shape influences flow-regime transitions. In this study, differently shaped Geldart group D particles are experimentally examined. Bed height, pressure drop, and their respective fluctuations are analyzed. With increasing deviation of particle shape from spheres, differences in flow-regime transitions occur with a tendency for the bed to form channels instead of undergoing smooth fluidization. The correlations available in the literature for spherical particles are limited in their applicability when used to predict regime changes for complex-shaped particles. Hence, based on existing correlations, improvements are derived. 展开更多
关键词 Fluidized bed Flow regimes Non-spherical particles Pressure drop and fluctuations Bed height
原文传递
Bubbling behavior of cohesive particles in a two-dimensional fluidized bed with immersed tubes 被引量:2
10
作者 Jiliang Ma Daoyin Liu Xiaoping Chen 《Particuology》 SCIE EI CAS CSCD 2017年第2期152-160,共9页
Fluidization hydrodynamics are greatly influenced by inter-particle cohesive forces. This paper studies the fluidization of large cohesive particles in a two-dimensional fluidized bed with immersed tubes using “polym... Fluidization hydrodynamics are greatly influenced by inter-particle cohesive forces. This paper studies the fluidization of large cohesive particles in a two-dimensional fluidized bed with immersed tubes using “polymer coating” to introduce cohesive force, to gain better understanding of bubbling behavior when particles become cohesive and its effect on chemical processes. The results show that the cohesive force promotes bubble splitting in the tube bank region, thereby causing an increase in the number and a decline in the aspect ratio of the bubbles. As the cohesive force increases within a low level, the bubble number increases and the bubble diameter decreases, while the aspect ratio exhibits different trends at different fluidization gas velocities. The difference in the evolution of bubble size under various cohesive forces mainly takes place in the region without tubes. When the cohesive force is large enough to generate stable agglomerates on the side walls of the bed, the bubble number and the bed expansion sharply decrease. The tubes serve as a framework that promotes the agglomeration, thus accelerating defluidization. Finally, the bubble profile around tubes was studied and found to greatly depend both on the cohesive forces and the location of tubes. 展开更多
关键词 Fluidized bed Cohesive particle Immersed tube Bubble behavior
原文传递
Discrete particle simulations of bubble-to-emulsion phase mass transfer in single-bubble fluidized beds 被引量:1
11
作者 Lianghui Tan Ivo Roghair Martin van Sint Annaland 《Particuology》 SCIE EI CAS CSCD 2017年第4期80-90,共11页
A classical Euler-Lagrangian model for gas-solid flows was extended with gas component mass conser- vation equations and used to obtain fundamental insights into bubble-to-emulsion phase mass transfer in bubbling gas-... A classical Euler-Lagrangian model for gas-solid flows was extended with gas component mass conser- vation equations and used to obtain fundamental insights into bubble-to-emulsion phase mass transfer in bubbling gas-solid fluidized beds. Simulations of injected single rising bubbles under incipient fiuidiza- tion conditions were carried out, using Geldart-A and -B particles. Phenomena observed in the simulations and those of various theoretical models used to derive phenomenological models were compared to chal- lenge the assumptions underlying the phenomenological models. The bubble-to-emulsion phase mass transfer coefficients calculated for the simulations using Geldart-B particles were in a good agreement with predictions made using the Davidson and Harrison (1963) model. The bubble-to-emulsion phase mass transfer coefficients for Geldart-A particles were, however, much smaller than the predictions obtained from theoretical models (e.g. Chiba and Kobayashi (1970)). The newly developed model allows a detailed analysis of various hydrodynamic aspects and their effects on the mass transfer characteristics in and around rising bubbles in fluidized beds. 展开更多
关键词 Mass transfer Discrete particle mode Fluidized bed Bubble-to-emulsion
原文传递
Particle Measurement Sensor for in situ determination of phase structure of fluidized bed 被引量:1
12
作者 Qiang Zhang Cang Huang Dong Jiang Xiaobo Wei Zhen Qian Fei Wei 《Particuology》 SCIE EI CAS CSCD 2009年第3期175-182,共8页
Based on three-dimensional (3D) acceleration sensing, an intelligent particle spy capable of detecting, transferring, and storing data, is proposed under the name of Particle Measurement Sensor (PMS). A prototype ... Based on three-dimensional (3D) acceleration sensing, an intelligent particle spy capable of detecting, transferring, and storing data, is proposed under the name of Particle Measurement Sensor (PMS). A prototype 60-mm-dia PMS was tested to track its freefall in terms of velocity and displacement, and served as a particle spy in a fluidized bed delivering the in situ acceleration information it detects. With increasing superficial gas velocity in the fluidized bed, the acceleration felt by PMS was observed to increase. The variance of the signals, which reflect the fluctuation, increased at first, reaching a maximum at the gas velocity (Uc) which marks the transition from bubbling to turbulent fluidization. Through probability density distribution (PDD) analysis, the PDD peak can be divided into the emulsion phase peak and the bubble phase peak. The average acceleration of emulsion and bubble phase increased, while the variance of both phases reached a maximum at Uc, at the same time. However, the difference between the variances of two phases reached the maximum at Uc. Findings of this study indicate that PMS can record independent in situ information. Further, it can provide other in situ measurements when equipped with additional multi-functional sensors. 展开更多
关键词 particle Measurement Sensor Fluidized bed Acceleration Gas-solid two-phase flow Phase structure
原文传递
Numerical approach for modeling particle transport phenomena in a closed loop of a circulating fluidized bed 被引量:1
13
作者 Wojciech P. Adamczyk Pawel Kozolub +4 位作者 Grzegorz Kruczek Monika Pilorz Adam Klimanek Tomasz Czakiert Gabriel Wecel 《Particuology》 SCIE EI CAS CSCD 2016年第6期69-79,共11页
Numerical modeling of a large scale circulating fiuidized bed (CFB) imposes many complexities and difficulties. Presence of a dense solid phase, a variety of spatial and time scales as well as complex model geometri... Numerical modeling of a large scale circulating fiuidized bed (CFB) imposes many complexities and difficulties. Presence of a dense solid phase, a variety of spatial and time scales as well as complex model geometries requires advanced numerical techniques. Moreover, the appropriate selection of a numerical model capable of solving granular flow, and geometrical model simplification can have a huge impact on the predicted flow field within the CFB boiler. In order to reduce the cost of the numerical simulations, the complex CFB boiler geometry is reduced to that of the combustion chamber. However, a question arises as to bow much one can simplify the geometrical model without losing accuracy of numerical simulations. To accurately predict the gas-solid and solid-solid mixing processes within subsequent sections of the CFB boiler (combustion chamber, solid separator, drain section), a complete 3D geometrical model should be used. Nevertheless, because of the presence of various spatial and temporal scales within subsequent boiler sections, the complete model of the 3D CFB boiler is practically unrealizable in numerical simulations. To resolve the aforementioned problems, this paper describes a new approach that can be applied for complete boiler modeling. The proposed approach enables complex particle transport and gas flow problems within each of the boiler sections to be accurately resolved, It has been achieved by dividing the CFB boiler geometry into several submodels, where different numerical approaches can be used to resolve gas-solid transport. The interactions between computational domains were taken into account by connecting the inlets/outlets of each section using a set of user-defined functions implemented into the solution procedure. The proposed approach ensures stable and accurate solution within the separated boiler zones. 展开更多
关键词 fluidization CFB Numerical modeling Multiphase flow particle transport Cyclone
原文传递
Scalable gas-phase processes to create nanostructured particles 被引量:1
14
作者 J.Ruud van Ommen Caner U.Yurteri +1 位作者 Naoko Ellis Erik M.Kelder 《Particuology》 SCIE EI CAS CSCD 2010年第6期572-577,共6页
The properties of nanoparticles are often different from those of larger grains of the same solid material because of their very large specific surface area. This enables many novel applications, but properties such a... The properties of nanoparticles are often different from those of larger grains of the same solid material because of their very large specific surface area. This enables many novel applications, but properties such as agglomeration can also hinder their potential use. By creating nanostructured particles one can take optimum benefit from the desired properties while minimizing the adverse effects. We aim at developing high-precision routes for scalable production of nanostructured particles. Two gas-phase synthesis routes are explored. The first one - covering nanoparticles with a continuous layer - is carried out using atomic layer deposition in a fluidized bed. Through fluidization, the full surface area of the nanoparticles becomes available. With this process, particles can be coated with an ultra-thin film of constant and well-tunable thickness. For the second route - attaching nanoparticles to larger particles - a novel approach using electrostatic forces is demonstrated. The micron-sized particles are charged with one polarity using tribocharging. Using electrospraying, a spray of charged nanoparticles with opposite polarity is generated. Their charge prevents agglomeration, while it enhances efficient deposition at the surface of the host particle. While the proposed processes offer good potential for scale-up, further work is needed to realize large-scale processes. 展开更多
关键词 Nanoparticles Nanocomposite materials Coating Films particle coating Atomic layer deposition Core-shell particles Electrospraying Electrohydrodynamic atomization Electrostatic forces fluidization
原文传递
A Study of the Influence of Solid Particles on Boiling Hysteresis
15
作者 M.H.Shi J.Ma 《Journal of Thermal Science》 SCIE EI CAS CSCD 1992年第1期41-45,共5页
Experiments have been performed to determine the effects on boiling hysteresis of locally fluidized particles contained in a liquid that serves as coolant for electronic equipment.The results show that locally fluidiz... Experiments have been performed to determine the effects on boiling hysteresis of locally fluidized particles contained in a liquid that serves as coolant for electronic equipment.The results show that locally fluidized particles can diminish boiling hysteresis. 展开更多
关键词 boiling hysteresis effects of locally fluidized particles.
原文传递
Numerical prediction of flow hydrodynamics of wet molecular sieve particles in a liquid-fluidized bed
16
作者 Guodong Liu Peng Wang +4 位作者 Huilin Lu Fan Yu Yanan Zhang Shuai Wang Liyan Sun 《Particuology》 SCIE EI CAS CSCD 2016年第2期42-50,共9页
The Eulerian-Eulerian framework was used in the numerical simulation of liquid hydrodynamics and particle motion in liquid-fluidized beds. The kinetic theory of granular flow, which accounts for the viscous drag influ... The Eulerian-Eulerian framework was used in the numerical simulation of liquid hydrodynamics and particle motion in liquid-fluidized beds. The kinetic theory of granular flow, which accounts for the viscous drag influence on the interstitial liquid phase, was used in combination with two-fluid models to simulate unsteady liquid-solid two-phase flows. We focus on local unsteady features predicted by the numerical models. The solid fraction power spectrum was analyzed. A typical flow pattern, such as core annular flow and particle back-mixing near the wall region of liquid-solid fluidized beds is obtained from this calculation. Effects of the restitution coefficient of particle-particle collisions on the distribution of granular pressure and temperature are discussed. Good agreement was achieved between the simulated results and experimental findings. 展开更多
关键词 Liquid-solid fluidized bed Wet particle collision Kinetic theory of granular flow Restitution coefficient
原文传递
An exploratory study of three-dimensional MP-PIC-based simulation of bubbling fluidized beds with and without baffles 被引量:5
17
作者 Shuai Yang Hao Wu +2 位作者 Weigang Lin Hongzhong Li Qingshan Zhua 《Particuology》 SCIE EI CAS CSCD 2018年第4期68-77,共10页
In this study, the flow characteristics of Geldart A particles in a bobbling fluidized bed with and without perforated plates were simulated by the multiphase particle-in-cell (MP-PlC)-based Eolerian-Lagrangian meth... In this study, the flow characteristics of Geldart A particles in a bobbling fluidized bed with and without perforated plates were simulated by the multiphase particle-in-cell (MP-PlC)-based Eolerian-Lagrangian method. A modified structure-based drag model was developed based on our previous work. Other drag models including the Parker and Wen-Yo-Ergon drag models were also employed to investigate the effects of drag models on the simulation results. Although the modified structure-based drag model better predicts the gas-solid flow dynamics of a baffle-free bubbling fluidized bed in comparison with the experimental data, none of these drag models predict the gas-solid flow in a baffled bobbling floidized bed sufficiently well because of the treatment of baffles in the Barracuda software. To improve the simulation accuracy, future versions of Barracuda should address the challenges of incorporating the bed height and the baffles. 展开更多
关键词 BaffleGeldart A particles Bubbling fluidized beds Simulation Multi-phase particle-in-cell Computational particle fluid dynamics
原文传递
Three-dimensional simulation of liquid injection,film formation and transport,in fluidized beds 被引量:2
18
作者 Paul Zhao Peter J. O'Rourke Dale Snider 《Particuology》 SCIE EI CAS CSCD 2009年第5期337-346,共10页
Liquid injection, and film formation and transport in dense-phase gas-solids fluidized beds are numerically simulated in three dimensions using a collisional exchange model that is based on the mechanism that collisio... Liquid injection, and film formation and transport in dense-phase gas-solids fluidized beds are numerically simulated in three dimensions using a collisional exchange model that is based on the mechanism that collisions cause transfer of liquid mass, momentum, and energy between particles. In the model, each of the particles is represented by a solid core and a liquid film surrounding the core. The model is incorporated in the framework of the commercial code Barracuda developed by CPFD Software. The commercial software is an advanced CFD-based computational tool where the particles are treated as discrete entities, calculated by the MP-PIC method, and tracked using the Lagrangian method. Details of the collisional liquid transfer model have been previously presented in O'Rourke, Zhao, and Snider (2009); this paper presents new capabilities and proof-testing of the collision model and a new method to better quantify the penetration length. Example calculations of a fluidized bed without liquid injection show the expected effect of collisions on the reduction of granular temperature (fluctuational kinetic energy) of the bed. When applied to liquid injection into a dense-phase fluidized bed under different conditions, the model predicts liquid penetration lengths comparable to the experiments. In addition, the simulation reveals for the first time the dynamic mixing of the liquid droplets with the bed particles and the transient distribution of the droplets inside the bed. 展开更多
关键词 MP-PIC Liquid injection Fluidized bed particle collisions CPFD Jet penetration
原文传递
Experimental investigation of hydrodynamics of liquid-solid mini-fluidized beds 被引量:5
19
作者 Can Tang Mingyan Liu Yanjun Li 《Particuology》 SCIE EI CAS CSCD 2016年第4期102-109,共8页
Expanded fluidization behavior in liquid-solid mini-fluidized beds (MFBs) was experimentally investigated using visual measurements. Wall effects in the liquid-solid MFBs were identified and explained. The measured ... Expanded fluidization behavior in liquid-solid mini-fluidized beds (MFBs) was experimentally investigated using visual measurements. Wall effects in the liquid-solid MFBs were identified and explained. The measured incipient]minimum fluidization liquid velocity (Umf) in the MFBs was 1.67 to 5.25 times higher than that calculated using the Ergun equation when the ratio of solid particle diameter to bed diameter varied from 0.017 to 0.091. The ratio of the Richardson-Zaki (R-Z) exponent obtained by fitting with experimental data to that calculated using the R-Z correlation varied from 0.92 to 0.55. A wider solid particle size distribution resulted in a smaller R-Z exponent. The influence of the solid particle material on Umf and R-Z exponent was negligible. 展开更多
关键词 Liquid-solid fluidization Mini-fluidized bed Expansion bed Wall effect particle size distribution
原文传递
Heat and mass transfer study in fluidized bed granulation-Prediction of entry length 被引量:2
20
作者 Papiya Roy Manish Vashishtha +1 位作者 Rajesh Khanna Duvvuri Subbarao 《Particuology》 SCIE EI CAS CSCD 2009年第3期215-219,共5页
Fluidized bed granulation is a process by which granules or coated particles are produced in a single piece of equipment by spraying a hinder as solution, suspension, or melt on the fluidized powder bed. Heat and mass... Fluidized bed granulation is a process by which granules or coated particles are produced in a single piece of equipment by spraying a hinder as solution, suspension, or melt on the fluidized powder bed. Heat and mass transfer correlation useful for designing a granulator has been derived based on the equivalence of evaporation rate of the liquid to the heat transferred from hot gas to particles: (m/A)Dp^2λ/Lmf(1-εmf)(Tg-Tl)Kg=hDp/Kg.This equation is applied to data on granulation experiments by different workers to calculate Reynolds number and Nusselt number to obtain a relation between heat and mass transfer from gas to particles during granulation on a logarithmic scale from which the following empirical relation is obtained: Nu=0.0205Re^1.3876 which is comparable to Kothari's correlation Nu=0.03Re^1.3.By using the heat and mass transfer correlation obtained, the entry length, that is the length of granulator up to which effective heat transfer from gas to bed particles takes place, is estimated, which is also validated with experimental study. The correct estimation of entry length is useful in optimal design of a granulator. 展开更多
关键词 Granulation Fluidized bed Gas to particle heat transfer Entry length
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部