期刊文献+
共找到236篇文章
< 1 2 12 >
每页显示 20 50 100
基于改进PF算法的ADS-B风场反演 被引量:1
1
作者 陈万通 吴多 +1 位作者 刘庆 任诗雨 《传感技术学报》 CAS CSCD 北大核心 2023年第7期1086-1091,共6页
将装载自动相关监视广播(ADS-B)机载端的民航飞机视作传感器,利用ADS-B下行数据实施风场反演是近年来新颖的风场探测手段之一。现有的反演算法在飞机小角度转弯情况下存在精度不高的问题,大面积空间风场重建也对风场探测提出了新的挑战... 将装载自动相关监视广播(ADS-B)机载端的民航飞机视作传感器,利用ADS-B下行数据实施风场反演是近年来新颖的风场探测手段之一。现有的反演算法在飞机小角度转弯情况下存在精度不高的问题,大面积空间风场重建也对风场探测提出了新的挑战。针对上述问题,利用数据的几何结构和Kullback-Leibler Divergence(KLD)采样对粒子滤波(Particle Filter,PF)算法进行改进,该算法通过结合ADS-B数据对航线上的固定位置不同高度层上风矢量进行反演,构造垂直风廓线,并与欧洲中期天气预报中心气象数据作对比,验证了算法的可行性与准确性;最后,利用气象粒子(Meteo-Particle,MP)模型对航线外大面积的风矢量进行估计。实验结果表明,该方法能够反映真实的风场。 展开更多
关键词 自动相关监视广播(ADS-B) 风场反演 气象粒子 改进pf算法 KLD采样
下载PDF
Improved Particle Filter for Passive Target Tracking 被引量:3
2
作者 邓小龙 谢剑英 杨煜普 《Journal of Shanghai University(English Edition)》 CAS 2005年第6期534-538,共5页
As a new method for dealing with any nonlinear or non-Ganssian distributions, based on the Monte Carlo methods and Bayesian filtering, particle filters (PF) are favored by researchers and widely applied in many fiel... As a new method for dealing with any nonlinear or non-Ganssian distributions, based on the Monte Carlo methods and Bayesian filtering, particle filters (PF) are favored by researchers and widely applied in many fields. Based on particle filtering, an improved extended Kalman filter (EKF) proposal distribution is presented. Evaluation of the weights is simplified and other improved techniques including the residual resampling step and Markov Chain Monte Carlo method are introduced for target tracking. Performances of the EKF, basic PF and the improved PF are compared in target tracking examples. The simulation results confirm that the improved particle filter outperforms the others. 展开更多
关键词 nonlinear NON-GAUSSIAN particle filter (pf target tracking extended Kalman filter (EKF).
下载PDF
An unscented particle filter for ground maneuvering target tracking 被引量:6
3
作者 GUO Rong-hua QIN Zheng 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第10期1588-1595,共8页
In this study, an unscented particle filtering method based on an interacting multiple model (IMM) frame for a Markovian switching system is presented. The method integrates the multiple model (MM) filter with an unsc... In this study, an unscented particle filtering method based on an interacting multiple model (IMM) frame for a Markovian switching system is presented. The method integrates the multiple model (MM) filter with an unscented particle filter (UPF) by an interaction step at the beginning. The framework (interaction/mixing, filtering, and combination) is similar to that in a standard IMM filter, but an UPF is adopted in each model. Therefore, the filtering performance and degeneracy phenomenon of particles are improved. The filtering method addresses nonlinear and/or non-Gaussian tracking problems. Simulation results show that the method has better tracking performance compared with the standard IMM-type filter and IMM particle filter. 展开更多
关键词 Interacting multiple model (IMM) Unscented particle filter (Upf) Ground target tracking particle filter (pf
下载PDF
Hybrid three-dimensional variation and particle filtering for nonlinear systems 被引量:2
4
作者 冷洪泽 宋君强 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期226-231,共6页
This work addresses the problem of estimating the states of nonlinear dynamic systems with sparse observations.We present a hybrid three-dimensional variation(3DVar) and particle piltering(PF) method,which combine... This work addresses the problem of estimating the states of nonlinear dynamic systems with sparse observations.We present a hybrid three-dimensional variation(3DVar) and particle piltering(PF) method,which combines the advantages of 3DVar and particle-based filters.By minimizing the cost function,this approach will produce a better proposal distribution of the state.Afterwards the stochastic resampling step in standard PF can be avoided through a deterministic scheme.The simulation results show that the performance of the new method is superior to the traditional ensemble Kalman filtering(EnKF) and the standard PF,especially in highly nonlinear systems. 展开更多
关键词 three-dimensional variation(3DVar) particle piltering(pf ensemble Kalman filtering(EnKF) chaos system
下载PDF
Improved particle filtering techniques based on generalized interactive genetic algorithm 被引量:4
5
作者 Yan Zhang Shafei Wang Jicheng Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期242-250,共9页
This paper improves the resampling step of particle filtering(PF) based on a broad interactive genetic algorithm to resolve particle degeneration and particle shortage.For target tracking in image processing,this pa... This paper improves the resampling step of particle filtering(PF) based on a broad interactive genetic algorithm to resolve particle degeneration and particle shortage.For target tracking in image processing,this paper uses the information coming from the particles of the previous fame image and new observation data to self-adaptively determine the selecting range of particles in current fame image.The improved selecting operator with jam gene is used to ensure the diversity of particles in mathematics,and the absolute arithmetical crossing operator whose feasible solution space being close about crossing operation,and non-uniform mutation operator is used to capture all kinds of mutation in this paper.The result of simulating experiment shows that the algorithm of this paper has better iterative estimating capability than extended Kalman filtering(EKF),PF,regularized partide filtering(RPF),and genetic algorithm(GA)-PF. 展开更多
关键词 particle filtering(pf particle degeneration particle shortage broad interactive genetic algorithm
下载PDF
Design of an Adaptive Particle Filter Based on Variance Reduction Technique 被引量:6
6
作者 ZHANG Gong-Yuan CHENG Yong-Mei YANG Feng PAN Quan LIANG Yan 《自动化学报》 EI CSCD 北大核心 2010年第7期1020-1024,共5页
关键词 粒子滤波器 非线性状态 估计方法 精度
下载PDF
A dual channel perturbation particle filter algorithm based on GPU acceleration 被引量:1
7
作者 LI Fan BI Hongkui +2 位作者 XIONG Jiajun YU Chenlong LAN Xuhui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期854-863,共10页
The particle filter(PF) algorithm is one of the most commonly used algorithms for maneuvering target tracking. The traditional PF maps from multi-dimensional information to onedimensional information during particle... The particle filter(PF) algorithm is one of the most commonly used algorithms for maneuvering target tracking. The traditional PF maps from multi-dimensional information to onedimensional information during particle weight calculation, and the incorrect transmission of information leads to the fact that the particle prediction information does not match the weight information, and its essence is the reduction of the information entropy of the useful information. To solve this problem, a dual channel independent filtering method is proposed based on the idea of equalization mapping. Firstly, the particle prediction performance is described by particle manipulations of different dimensions, and the accuracy of particle prediction is improved. The improvement of particle degradation of this algorithm is analyzed in the aspects of particle weight and effective particle number. Secondly, according to the problem of lack of particle samples, the new particles are generated based on the filtering results, and the particle diversity is increased. Finally, the introduction of the graphics processing unit(GPU) parallel computing the platform, the “channel-level” and “particlelevel” parallel computing the program are designed to accelerate the algorithm. The simulation results show that the algorithm has the advantages of better filtering precision, higher particle efficiency and faster calculation speed compared with the traditional algorithm of the CPU platform. 展开更多
关键词 particle filter (pf dual channel filtering graphic pro-cessing unit (GPU) parallel operation.
下载PDF
Throughput-efficient wireless system and blind detection via improved particle filtering 被引量:2
8
作者 冯熳 Wu Lenan 《High Technology Letters》 EI CAS 2009年第2期192-197,共6页
This paper introduces throughput-efficient wireless system based on an extension to binary phasemodulations,named extended binary phase shift keying(EBPSK),and the corresponding analysis ofpower spectra,especially the... This paper introduces throughput-efficient wireless system based on an extension to binary phasemodulations,named extended binary phase shift keying(EBPSK),and the corresponding analysis ofpower spectra,especially the extension to channel capacity are given.Importantly,a novel sequential es-timation and detection approach for this EBPSK system is proposed.The basic idea is to design a proba-bilistic approximation method for the computation of the maximum a posterior distribution via particle fil-tering method(PF).Subsequently,a new important function in PF is presented,so that the performanceof the detector has a great improvement.Finally,computer simulation illustrates that EBPSK system hasvery high transmission rate,and also the good performance of the proposed PF detector is demonstrated. 展开更多
关键词 extended binary phase shift keying (EBPSK) channel capacity particle filtering (pf power spectrum ultra narrow-band (UNB)
下载PDF
Dominant Correlogram Based Particle Filter Tracking
9
作者 毛燕芬 施鹏飞 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第1期12-15,共4页
A novel dominant correlogram based particle filter was proposed for an object tracking in visual surveillance. Particle filter outperforms the Kalman filter in non-linear and non-Gaussian estimation problem. This pape... A novel dominant correlogram based particle filter was proposed for an object tracking in visual surveillance. Particle filter outperforms the Kalman filter in non-linear and non-Gaussian estimation problem. This paper proposed incorporating spatial information into visual feature, and yields a reliable likelihood description of the observation and prediction. A similarity-ratio is defined to evaluate the effectivity of different similarity measurements in weighing samples. The experimental results demonstrate the effective and robust performance compared with the histogram based tracking in traffic scenes. 展开更多
关键词 dominant correlogram particle filter (pf) visual probabilistic tracking similarity-ratio
下载PDF
AN ITERATIVE PARTICLE FILTER SIGNAL DETECTOR FOR MIMO FAST FADING CHANNELS
10
作者 Yang Tao Hu Bo 《Journal of Electronics(China)》 2008年第2期157-165,共9页
For flat fast fading Multiple-Input Multiple-Output(MIMO) channels,this paper presents a sampling based channel estimation and an iterative Particle Filter(PF) signal detection scheme. The channel estimation is compri... For flat fast fading Multiple-Input Multiple-Output(MIMO) channels,this paper presents a sampling based channel estimation and an iterative Particle Filter(PF) signal detection scheme. The channel estimation is comprised of two parts:the adaptive iterative update on the channel distribution mean and a regular update on the "adaptability" via pilot. In the detection procedure,the PF is employed to produce the optimal decision given the known received signal and the sequence of the channel samples,where an asymptotic optimal importance density is constructed,and in terms of the asymptotic update order,the Parallel Importance Update(PIU) and the Serial Importance Update(SIU) scheme are performed respectively. The simulation results show that for the given fading channel,if an appropriate pilot mode is selected,the proposed scheme is more robust than the conventional Kalman filter based superimposed detection scheme. 展开更多
关键词 Multiple-Input Multiple-Output Update (PIU) Serial Importance Update (SIU) (MIMO) particle Filter (pf Parallel Importance
下载PDF
A novel SMC-PHD filter based on particle compensation
11
作者 徐从安 何友 +3 位作者 杨富程 简涛 王海鹏 李天梅 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1826-1836,共11页
As a typical implementation of the probability hypothesis density(PHD) filter, sequential Monte Carlo PHD(SMC-PHD) is widely employed in highly nonlinear systems. However, the particle impoverishment problem introduce... As a typical implementation of the probability hypothesis density(PHD) filter, sequential Monte Carlo PHD(SMC-PHD) is widely employed in highly nonlinear systems. However, the particle impoverishment problem introduced by the resampling step, together with the high computational burden problem, may lead to performance degradation and restrain the use of SMC-PHD filter in practical applications. In this work, a novel SMC-PHD filter based on particle compensation is proposed to solve above problems. Firstly, according to a comprehensive analysis on the particle impoverishment problem, a new particle generating mechanism is developed to compensate the particles. Then, all the particles are integrated into the SMC-PHD filter framework. Simulation results demonstrate that, in comparison with the SMC-PHD filter, proposed PC-SMC-PHD filter is capable of overcoming the particle impoverishment problem, as well as improving the processing rate for a certain tracking accuracy in different scenarios. 展开更多
关键词 random finite set(RFS) probability hypothesis density(PHD) particle filter(pf particle impoverishment particle compensation multi-target tracking(MTT)
下载PDF
基于TRNN和FA-PF融合的锂离子电池RUL预测
12
作者 徐波 雷敏 王钋 《电源学报》 CSCD 北大核心 2023年第2期138-145,共8页
预测锂电池剩余使用寿命RUL(remaining useful life)可以提高电池供电系统的稳定性和安全性,从而明确故障的发生并及时做出响应。在预测过程中粒子滤波PF(particle filter)常用于在线辨识模型参数,但当PF在线辨识参数时易出现粒子贫化问... 预测锂电池剩余使用寿命RUL(remaining useful life)可以提高电池供电系统的稳定性和安全性,从而明确故障的发生并及时做出响应。在预测过程中粒子滤波PF(particle filter)常用于在线辨识模型参数,但当PF在线辨识参数时易出现粒子贫化问题,需要大量粒子才能完成状态估计,这将会导致预测结果不准确。为了提高RUL预测的准确性,提出一种基于时间递归神经网络TRNN(time recurrent neural network)和萤火虫算法FA(firefly algorithm)优化PF融合的锂电池RUL预测方法。首先,由于TRNN的泛化能力优于经验模型,并且易于捕捉容量退化的长距离依赖问题,因此选用其模拟各种条件下的电池退化模型;其次,基于FA优化的PF技术对TRNN模型参数进行递归更新,使粒子群移动到高似然区域,从而减少PF的贫化;最后,选择不同条件下不同电池的实验数据进行验证和比较。结果表明,与传统方法相比,该方法具有更高的RUL预测精度。 展开更多
关键词 锂离子电池 剩余使用寿命 时间递归神经网络 萤火虫算法 粒子滤波
下载PDF
基于HMM和优化的PF的数控转台精度衰退模型 被引量:8
13
作者 王刚 陈捷 +1 位作者 洪荣晶 王华 《振动与冲击》 EI CSCD 北大核心 2018年第6期7-13,共7页
针对数控转台精度衰退状态缺乏有效的评估方法的问题,提出一种数控转台重复定位精度衰退趋势预测模型,该模型结合了隐马尔科夫(Hidden Markov Model,HMM)算法和粒子滤波(Particle Filtering,PF)算法,其中粒子滤波算法使用粒子群算法(Par... 针对数控转台精度衰退状态缺乏有效的评估方法的问题,提出一种数控转台重复定位精度衰退趋势预测模型,该模型结合了隐马尔科夫(Hidden Markov Model,HMM)算法和粒子滤波(Particle Filtering,PF)算法,其中粒子滤波算法使用粒子群算法(Particle Swarm Optimization,PSO)优化了初始参数。选择了从数控转台精度衰退加速寿命试验中获得的振动信号作为研究数据。通过聚合经验模态与主成分分析(EEMD-PCA)算法对原始信号降噪,并提取含有故障特征的信号进行信号重构;使用统计特征量作为观察值训练获得HMM模型,对数控转台精度衰减做出早期诊断,并由此获得数控转台精度健康状态指标;使用粒子滤波算法建立数控转台精度衰退预测模型,并预测精度的剩余寿命。在以第50组数据为预测起始点时,预测的剩余寿命为21,实际测量的结果为17,相差4,比较接近。综合分析模型计算与试验测量的结果表明。 展开更多
关键词 数控转台 隐马尔科夫模型 粒子滤波算法 定位精度 剩余寿命
下载PDF
改进权值计算的EPF算法及在目标跟踪中的应用 被引量:4
14
作者 王秋平 周原 +1 位作者 康顺 左玲 《电光与控制》 北大核心 2011年第4期10-12,25,共4页
扩展卡尔曼粒子滤波(EPF)在预测阶段通过EKF选取重要性函数而优化了粒子选取,但是传统EPF算法中粒子权值一般是通过正态分布的概率密度函数计算的。此方法没有突出不同噪声粒子的权值差别,在计算中引入了较大的相对误差。通过在更新阶... 扩展卡尔曼粒子滤波(EPF)在预测阶段通过EKF选取重要性函数而优化了粒子选取,但是传统EPF算法中粒子权值一般是通过正态分布的概率密度函数计算的。此方法没有突出不同噪声粒子的权值差别,在计算中引入了较大的相对误差。通过在更新阶段对权值计算所依赖的概率密度函数做出改进,得到改进的EPF算法。同时采用实际目标跟踪数据进行仿真对比实验,结果验证了此方法有效可行,并且减小了预测误差。 展开更多
关键词 目标跟踪 粒子滤波(pf) Epf 概率密度函数 权值计算 正态分布 反比例函数
下载PDF
基于EKPF的GPS导航模型研究 被引量:2
15
作者 韩厚增 王坚 +1 位作者 李增科 王志杰 《大地测量与地球动力学》 CSCD 北大核心 2013年第2期139-142,共4页
通过模拟GPS卫星系统的运行以及接收机的运动轨迹,采用11状态PVA(Position-Velocity-Acceleration)导航模型进行导航定位分析,并分别采用扩展卡尔曼粒子滤波和扩展卡尔曼滤波计算导航解,结果表明两种滤波均能得出较好导航解,并且前者削... 通过模拟GPS卫星系统的运行以及接收机的运动轨迹,采用11状态PVA(Position-Velocity-Acceleration)导航模型进行导航定位分析,并分别采用扩展卡尔曼粒子滤波和扩展卡尔曼滤波计算导航解,结果表明两种滤波均能得出较好导航解,并且前者削弱了多路径效应的影响,进一步提高了导航定位精度,尤其在高程方向精度提高更为明显。 展开更多
关键词 GPS导航 导航模型 粒子滤波 扩展卡尔曼滤波 扩展卡尔曼粒子滤波
下载PDF
IMM-UPF算法在机动目标跟踪中的研究 被引量:3
16
作者 曹洁 文如泉 《计算机工程与应用》 CSCD 北大核心 2010年第28期240-243,共4页
为解决机动目标跟踪的非线性和噪声不确定等问题,提出了一种新的滤波算法:融合了交互式多模型(IMM)、粒子滤波(PF)和无迹卡尔曼滤波(UKF)的IMM-UPF算法。该算法采用多模型结构以跟踪目标的任意机动,粒子滤波能处理非线性、非高斯问题,... 为解决机动目标跟踪的非线性和噪声不确定等问题,提出了一种新的滤波算法:融合了交互式多模型(IMM)、粒子滤波(PF)和无迹卡尔曼滤波(UKF)的IMM-UPF算法。该算法采用多模型结构以跟踪目标的任意机动,粒子滤波能处理非线性、非高斯问题,而采用UKF产生粒子,由于考虑了当前观测值,使得粒子的分布更接近后验概率密度分布,克服粒子的退化现象,从而提高估计精度。系统的模型集根据实际的目标系统设计了三个非线性模型。通过实例仿真,结果证明了IMM-UPF算法的有效性,且其性能优于PF、UPF算法。 展开更多
关键词 目标跟踪 交互式多模型 粒子滤波 交互式多模型无迹卡尔曼滤波(IMM.Upf)
下载PDF
修正的EKPF算法在固定单站被动目标跟踪中的应用 被引量:3
17
作者 申正义 闫抒升 +1 位作者 王晓军 王晴晴 《现代防御技术》 北大核心 2015年第2期116-121,153,共7页
基于以角度、角度变化率、多普勒频率变化率信息为观测量的固定单站被动目标跟踪系统,引入扩展卡尔曼粒子滤波(EKPF)算法对定位结果进行滤波处理。理论分析和仿真实验证明了其滤波性能在该系统中的优越性。针对EKPF算法运算量大、实时... 基于以角度、角度变化率、多普勒频率变化率信息为观测量的固定单站被动目标跟踪系统,引入扩展卡尔曼粒子滤波(EKPF)算法对定位结果进行滤波处理。理论分析和仿真实验证明了其滤波性能在该系统中的优越性。针对EKPF算法运算量大、实时性差的问题,通过对部分粒子进行间隔EKF采样,将EKPF算法进行修正。修正的EKPF算法既有效降低了运算量,又增加了粒子的多样性,使粒子集更加逼近真实的后验概率密度函数。计算机仿真表明,与传统的EKPF算法相比,修正算法在保证滤波性能基本不变的前提下,算法实时性得到了有效提高。 展开更多
关键词 粒子滤波 扩展卡尔曼滤波 固定单站被动目标跟踪 间隔采样
下载PDF
改进的SRCDKF-PF算法及在BOT系统中的应用 被引量:2
18
作者 匡兴红 邵惠鹤 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第6期1508-1510,1514,共4页
针对纯方位目标跟踪(Bearing-Only Tracking,BOT)系统强非线性特点,提出一种新的解决方案:采用平方根中心差分卡尔曼滤波器(Square-RootCDKF,SRCDKF)产生粒子滤波提议分布,融入最新的观测数据影响;增加改进措施以提高滤波性能,如采用系... 针对纯方位目标跟踪(Bearing-Only Tracking,BOT)系统强非线性特点,提出一种新的解决方案:采用平方根中心差分卡尔曼滤波器(Square-RootCDKF,SRCDKF)产生粒子滤波提议分布,融入最新的观测数据影响;增加改进措施以提高滤波性能,如采用系统重抽样算法减少方差、应用马尔可夫链模特卡罗(Markovchain Monte Carlo,MCMC)方法消除粒子贫乏等。仿真表明该算法是有效的,针对当前BOT系统,比传统EKF、PF算法可靠性更好,跟踪精度更高。 展开更多
关键词 纯方位目标跟踪 粒子滤波 SRCDKF算法 SRCDKF-pf算法
下载PDF
EKF、UKF、PF目标跟踪性能的比较 被引量:40
19
作者 万莉 刘焰春 皮亦鸣 《雷达科学与技术》 2007年第1期13-16,共4页
雷达系统的非线性目标跟踪已被人们广泛重视。扩展卡尔曼滤波器(EKF)是将卡尔曼滤波器(KF)局部线性化,其算法简单、计算量小,适用于弱非线性、高斯环境下。不敏卡尔曼滤波器(UKF)是用一系列确定样本来逼近状态的后验概率密度,在高斯环境... 雷达系统的非线性目标跟踪已被人们广泛重视。扩展卡尔曼滤波器(EKF)是将卡尔曼滤波器(KF)局部线性化,其算法简单、计算量小,适用于弱非线性、高斯环境下。不敏卡尔曼滤波器(UKF)是用一系列确定样本来逼近状态的后验概率密度,在高斯环境中,对任何非线性系统都有较好的跟踪性能。粒子滤波器(PF)是用随机样本来近似状态后验概率密度函数,适用于任何非线性非高斯系统。文中通过仿真实验,对三者的性能进行了仿真比较,结果证明在复杂的非高斯非线性环境中,粒子滤波器的性能明显优于另外两种滤波器,但计算复杂,耗时长。 展开更多
关键词 目标跟踪 后验概率密度函数 非线性滤波 粒子滤波 扩展卡尔曼滤波 不敏卡尔曼滤波
下载PDF
基于OOSM-PF的微弱目标检测前跟踪 被引量:1
20
作者 谭顺成 王国宏 +1 位作者 于洪波 关成斌 《弹箭与制导学报》 CSCD 北大核心 2015年第3期162-165,共4页
由于量测数据预处理以及通信延迟等因素的影响,集中式融合跟踪系统面临着无序量测的问题。针对低信噪比和无序量测情况下的微弱目标检测与跟踪,提出了一种基于无序量测和粒子滤波的检测前跟踪方法,然后将该方法的性能与顺序量测滤波方... 由于量测数据预处理以及通信延迟等因素的影响,集中式融合跟踪系统面临着无序量测的问题。针对低信噪比和无序量测情况下的微弱目标检测与跟踪,提出了一种基于无序量测和粒子滤波的检测前跟踪方法,然后将该方法的性能与顺序量测滤波方法以及丢弃无序量测方法的性能进行分析对比。仿真结果表明,该算法可以有效处理无序量测问题,实现对微弱目标的有效检测和跟踪,其目标跟踪精度接近顺序量测滤波的跟踪精度。 展开更多
关键词 无序量测(OOSM) 粒子滤波(pf) 检测前跟踪(TBD) 微弱目标跟踪
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部