期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Study on the fragmentation of granite due to the impact of single particle and double particles 被引量:5
1
作者 Yuchun Kuang Wei Lin +2 位作者 Xiaofeng Xu Yonghui Liu Kaisong Wu 《Petroleum》 2016年第3期267-272,共6页
Particle Impact Drilling(PID)is a novel method to improve the rate of penetration(ROP).In order to further improve the performance of PID,an investigation into the effect of single and double particles:(1)diameter;(2)... Particle Impact Drilling(PID)is a novel method to improve the rate of penetration(ROP).In order to further improve the performance of PID,an investigation into the effect of single and double particles:(1)diameter;(2)initial velocity;(3)distance;and(4)angle of incidence was undertaken to investigate their effects on broken volume and penetration depth into hard brittle rock.For this purpose,the laboratory experiment of single particle impact rock was employed.Meanwhile,based on the LS-DYNA,a new finite element(FE)simulation of the PID,including single and double particles impact rock,has been presented.The 3-dimensional(3D),aix-symmetric,dynamicexplicit,Lagrangian model has been considered in this simulation.And the Elastic and Holmquist Johnson Cook(HJC)material behaviors have been used for particles and rocks,respectively.The FE simulation results of single particle impacting rock are good agreement with experimental data.Furthermore,in this article the optimal impact parameters,including diameter,initial velocity,distance and the angle of incidence,are obtained in PID. 展开更多
关键词 particle impact drilling DYNAMICS SHPB test Simulation Rock breaking mechanism
原文传递
EXPERIMENTAL STUDY OF ROCK BREAKING EFFECT OF STEEL PARTICLES 被引量:5
2
作者 CUI Meng ZHAI Ying-hu JI Guo-dong 《Journal of Hydrodynamics》 SCIE EI CSCD 2011年第2期241-246,共6页
Particle impact drilling is an efficient drilling technology for deep-well hard formation, With this technology, the rock is cut mainly by high-speed spherical particle impact under hydraulic action. In this article, ... Particle impact drilling is an efficient drilling technology for deep-well hard formation, With this technology, the rock is cut mainly by high-speed spherical particle impact under hydraulic action. In this article, the influence of jet flow factors, hydraulic factors and abrasive factors on rock breaking is studied through indoor experiments of impact by steel particles. The results indicate that the particle water jet has an optimal standoff distance and particle concentration; the rock breaking effect declines with the increase of the confining pressure and the decrease of the pump pressure and particle diameter. This study will provide some food of thought for the development of particle impact drilling technology. 展开更多
关键词 hard formation particle impact drilling water jet rock breaking effect experimental research
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部