期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Flow instability of nanofuilds in jet
1
作者 Yi XIA Jianzhong LIN +1 位作者 Fubing BAO T.L.CHAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第2期141-152,共12页
The flow instability of nanofluids in a jet is studied numerically under various shape factors of the velocity profile, Reynolds numbers, nanoparticle mass loadings,Knudsen numbers, and Stokes numbers. The numerical r... The flow instability of nanofluids in a jet is studied numerically under various shape factors of the velocity profile, Reynolds numbers, nanoparticle mass loadings,Knudsen numbers, and Stokes numbers. The numerical results are compared with the available theoretical results for validation. The results show that the presence of nanoparticles enhances the flow stability, and there exists a critical particle mass loading beyond which the flow is stable. As the shape factor of the velocity profile and the Reynolds number increase, the flow becomes more unstable. However, the flow becomes more stable with the increase of the particle mass loading. The wavenumber corresponding to the maximum of wave amplification becomes large with the increase of the shape factor of the velocity profile, and with the decrease of the particle mass loading and the Reynolds number. The variations of wave amplification with the Stokes number and the Knudsen number are not monotonic increasing or decreasing, and there exists a critical Stokes number and a Knudsen number with which the flow is relatively stable and most unstable,respectively, when other parameters remain unchanged. The perturbation with the first azimuthal mode makes the flow unstable more easily than that with the axisymmetric azimuthal mode. The wavenumbers corresponding to the maximum of wave amplification are more concentrated for the perturbation with the axisymmetric azimuthal mode. 展开更多
关键词 nanoparticle-laden jet flow hydrodynamic instability Stokes number Knudsen number particle mass loading
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部