The Graz Ionospheric Flux Tube Simulations (GIFTS) has been improved. The improved GIFTS model was used to numerically investigate the energy particle precipitation on the distribution of electron density in the ion...The Graz Ionospheric Flux Tube Simulations (GIFTS) has been improved. The improved GIFTS model was used to numerically investigate the energy particle precipitation on the distribution of electron density in the ionospheric cusp foot-point region under conditions of large plasma convection during magnetic storm. After including the effects of low energy incident particles, the ionospheric electron densities increase remarkably above altitude of -250 km, showing a peak at about 350 km. The percent enhancements of electron densities increase gradually with altitude, exceed- ing 60% near the upper boundary of the calculation. The calculated ionospheric F2-peak was remarkably enhanced and lifted up by the incident low energy electrons.展开更多
Based on the auroral electron/ion precipitation boundary database observed by the DMSP satellites during 1984–2009, the characteristics of the nightside equatorial boundaries of the electron precipitation(B1E) and ...Based on the auroral electron/ion precipitation boundary database observed by the DMSP satellites during 1984–2009, the characteristics of the nightside equatorial boundaries of the electron precipitation(B1E) and the ion precipitation(B1I) in the Northern/Southern Hemispheres(NH/SH) are statistically investigated. The results show: That most of the boundaries are located between magnetic latitude(MLAT) of 60°–70° with the mean MLAT for B1E/B1 I to be 64.30°N/63.22°N and 64.48°S/63.26°S in the NH and SH, respectively, indicating that B1 E and B1 I in both hemispheres are located in conjugated magnetic field lines with B1 E ~1.2° poleward of B1I; that the MLAT of B1 E and B1 I in both hemispheres shift to lower MLAT(from ~70° to ~55°) as geomagnetic activity increases; that MLAT of both B1 E and B1 I and their differences slowly decrease from dusk to midnight with some difference in both hemispheres during different levels of geomagnetic activities; that B1 E and B1 I in both hemisphere decrease linearly with Kp and exponentially with Dst, AE, and SYM-H, respectively, demonstrating that auroral particle precipitation is closely related with geomagnetic activity; that in different magnetic local time(MLT) sectors, the changing rates of the boundaries with Kp are different, and the rates of B1 E are generally larger than that of B1 I, implying that the difference between B1 E and B1 I reduce with increasing geomagnetic activity. Compared with previous studies, the statistical results based on the long-term large database in this paper can well reflect the properties of the equatorial boundaries of auroral precipitation and may be used for physical modeling or space weather forecasting in future.展开更多
Y_2O_3 ultrafine particles have been prepared by means of precipitation in Japan and U.S.A., and ultrafine particles of rare earth oxide have been prepared with dicarboxyl precipitate by Wang Zenglin et al. It has not...Y_2O_3 ultrafine particles have been prepared by means of precipitation in Japan and U.S.A., and ultrafine particles of rare earth oxide have been prepared with dicarboxyl precipitate by Wang Zenglin et al. It has not been reported, however, to prepare La_2O_3 ultrafine particles with urea as the hydrolytic agent. This method is easy to operate, and the materials are cheap and easily available, besides, it is easy to obtain homogeneous spherical precursors of ultrafine particles. The present, paper describes the preparation of La_2O_3 ultrafine particles with urea as hydrolytic agent, and observes some of its characteristics.展开更多
In recent years,the Cloud Imaging Probe(CIP)and Precipitation Imaging Probe(PIP)produced by Droplet Measurement Technologies(DMT)have been introduced by a number of meteorological research and operation centers in Chi...In recent years,the Cloud Imaging Probe(CIP)and Precipitation Imaging Probe(PIP)produced by Droplet Measurement Technologies(DMT)have been introduced by a number of meteorological research and operation centers in China.The supporting software provided by DMT,i.e.,PADS(Particle Analysis and Display System),cannot output detailed information on each individual particle,which definitely limits the in-depth utilization of cloud and precipitation particle image data in China.In this paper,particle-by-particle information was extracted by decompressing the CIP and PIP original particle image data,based on which a new definition of the dimension for nonspherical particles is proposed by using the area of the convex hull enclosing a particle to obtain the equivalent diameter of a circle with equal area.Based on the data detected during one flight in Inner Mongolia,the particle size distribution obtained using the new particle size definition and that used by the other four existing definitions are compared.The results show that the particle number concentration calculated using different particle size definitions can vary by up to an order of magnitude.The result obtained based on the new particle size definition is closest to that calculated with the area-equivalent diameter definition.展开更多
The objective of this work is using the online measurement method to study the process of precipitation of nickel hydroxide in a single-feed semi-batch stirred reactor with an internal diameter ofD = 240mm. The effect...The objective of this work is using the online measurement method to study the process of precipitation of nickel hydroxide in a single-feed semi-batch stirred reactor with an internal diameter ofD = 240mm. The effects of impeller speed, impeller type, impeller diameter and feed location on the mean particle size d43 and particle size distribution (PSD) were investigated, d43 and PSD were measured online using a Malvern Insitec Liquid Pro- cess Sizer every 20 s. It was found that d43 varied between 13 kwh and 26 lain under different operating conditions, and it decreased with increasing impeller diameter. When feeding at the off-bottom distance of D/2 under lower impeller speeds, d43 was significantly smaller than that at D/3. PSDs were slightly influenced by operating conditions.展开更多
Precipitation scavenging of aerosol particles is an important removal process in the atmosphere that can change aerosol physical and optical properties. This paper analyzes the changes in aerosol physical and optical ...Precipitation scavenging of aerosol particles is an important removal process in the atmosphere that can change aerosol physical and optical properties. This paper analyzes the changes in aerosol physical and optical properties before and after four rain events using in situ observations of mass concentration, number concentration, particle size distribution, scattering and absorption coefficients of aerosols in June and July 2013 at the Xianghe comprehensive atmospheric observation station in China. The results show the effect of rain scavenging is related to the rain intensity and duration, the wind speed and direction. During the rain events, the temporal variation of aerosol number concentration was consistent with the variation in mass concentration, but their size-resolved scavenging ratios were different. After the rain events, the increase in aerosol mass concentration began with an increase in particles with diameter <0.8 μm [measured using an aerodynamic particle sizer(APS)], and fine particles with diameter <0.1 μm [measured using a scanning mobility particle sizer(SMPS)]. Rainfall was most efficient at removing particles with diameter ~0.6 μm and greater than 3.5 μm. The changes in peak values of the particle number distribution(measured using the SMPS) before and after the rain events reflect the strong scavenging effect on particles within the 100–120 nm size range. The variation patterns of aerosol scattering and absorption coefficients before and after the rain events were similar, but their scavenging ratios differed, which may have been related to the aerosol particle size distribution and chemical composition.展开更多
In this study, we provide the first detailed analysis of variations in the spacecraft potential (Vs) of the three Swarm satellites, which are flying at about 400-500 km. Unlike previous studies that have investigated ...In this study, we provide the first detailed analysis of variations in the spacecraft potential (Vs) of the three Swarm satellites, which are flying at about 400-500 km. Unlike previous studies that have investigated extreme charging events, usually with spacecraft potentials as negative as −100 V, this study is focused on variations of Swarm Vs readings, which fall within a few negative volts. The Swarm observations show that spacecraft at low Earth orbital (LEO) altitudes are charged only slightly negatively, varying between −7 V and 0 V, with the majority of recorded potentials at these altitudes clustering close to −2 V. However, a second peak of Vs data is found at −5.5 V, though the event numbers for these more-negative observations are less, by an order of magnitude, than for incidents near the −2 V peak. These two distinct Vs peaks suggest two different causes. We have thus divided the Swarm spacecraft Vs data into two categories: less-negatively charged (−5 < Vs < 0 V) and more-negatively-charged (−6.5 < Vs < −5 V). These two Vs categories exhibit different spatial and temporal distributions. The Vs observations in the first category remain relatively closer to 0 V above the magnetic equator, but become much more negative at low and middle latitudes on the day side;at high latitudes, these first-category Vs readings are relatively more-negative during local summer. Second-category Vs events cluster into two bands at the middle latitudes (between ±20°-50° magnetic latitude), but with slightly more negative readings at the South Atlantic Anomaly (SAA) region;at high latitudes, these rarer but more-negative second-category Vs events exhibit relatively more-negative values during local winter, which is opposite to the seasonal pattern seen in the first category. By comparing Vs data to the distributions of background plasma density at Swarm altitudes, we find for the first category that more-negative Vs readings are recorded at regions with higher background plasma density, while for the second category the more-negative Vs data are observed at regions with lower background plasma density. This can be explained as follows: the electron and ion fluxes incident on Swarm surface, whose differences determine the potential of Swarm, are dominated by the background “cold” plasma (due to ionization) and “hot” plasma (due to precipitated particles from magnetosphere) for the two Vs categories, respectively.展开更多
It has been more than 30 years since the first Chinese Antarctic Expedition took place. Polar upper atmospheric observations started at this time. First began at Great Wall Station and then at Zhongshan Station in Ant...It has been more than 30 years since the first Chinese Antarctic Expedition took place. Polar upper atmospheric observations started at this time. First began at Great Wall Station and then at Zhongshan Station in Antarctica, and later in the Arctic at Yellow River Station, Kjell Henriksen Observatory on Svalbard, and at the China-Iceland Joint Aurora Observatory in Iceland. In this paper, we reviewed the advances in polar upper atmosphere physics (UAP) based on the Chinese national Arctic and Antarctic research over the last five years. These included newly deployed observatories and research instruments in the Arctic and Antarctic; and new research findings, from grotmd-based observations, about polar ionosphere dynamics, aurora and particle precipitation, polar plasma convection, geomagnetic pulsations and space plasma waves, space weather in the polar regions, simulations of the polar ionosphere-magnetosphere. In conclusion, suggestions were made for future polar upper atmosphere physics research in China.展开更多
Polar mesosphere summer echoes(PMSEs)are very strong radar echoes in the polar mesopause in local summer.Here we present the frequency dependence of the volume reflectivity and the effect of energetic particle precipi...Polar mesosphere summer echoes(PMSEs)are very strong radar echoes in the polar mesopause in local summer.Here we present the frequency dependence of the volume reflectivity and the effect of energetic particle precipitation on modulated PMSEs by using PMSEs observations carried out by European Incoherent SCATter(EISCAT)heating equipment simultaneously with very high frequency(VHF)radar and ultra high frequency(UHF)radar on 12 July 2007.According to the experimental observations,the PMSEs occurrence rate at VHF was much higher than that at UHF,and the altitude of the PMSEs maximum observed at VHF was higher than that at UHF.Overlapping regions were observed by VHF radar between high energetic particle precipitation and the PMSEs.In addition,highfrequency heating had a very limited impact on PMSEs when the UHF electron density was enhanced because of energetic particle precipitation.In addition,an updated qualitative method was used to study the relationship between volume reflectivity and frequency.The volume reflectivity was found to be inversely proportional to the fourth power of radar frequency.The theoretical and experimental results provide a definitive data foundation for further analysis and investigation of the physical mechanism of PMSEs.展开更多
Storm-time changes of main plasma parameters in the auroral ionosphere are analyzed for two intense storms occurring on May 15, 1997 and Sept. 25, 1998, with emphasis on their relationship to the solar wind dynamic pr...Storm-time changes of main plasma parameters in the auroral ionosphere are analyzed for two intense storms occurring on May 15, 1997 and Sept. 25, 1998, with emphasis on their relationship to the solar wind dynamic pressure and the IMFB z component. Strong hard particle precipitation occurred in the initial phase for both storms, associated with high solar wind dynamical pressure. During the recovery phase of the storms, some strong particle precipitation was neither concerned with high solar wind pressure nor southward IMFB z. Severe negative storm effects depicted by electron density depletion appeared in theF-region during the main and recovery phase of both storms, caused by intensive electric field-related strong Joule/frictional heating when IMF was largely southward. The ion temperature behaved similarly inE-andF-region, but the electron temperature did quite different, with a strong increase in the lowerE-region relating to plasma instability excited by strong electric field and a slight decrease in theF-region probably concerning with a cooling process. The field-aligned ion velocity was high and apparently anticorrelated with the northward component of the ion convection velocity.展开更多
In this review, the observational facts about pulsating aurorae are summarized and discussed in the frame of the recent develpment of the theories which intend to explain the mechanism of auroral pulsations. Although ...In this review, the observational facts about pulsating aurorae are summarized and discussed in the frame of the recent develpment of the theories which intend to explain the mechanism of auroral pulsations. Although new data are available some key observations in the magnetosphere are still missing in order to identify the wave mode to precipitate electrons into the atmosphere and in order to understand the role of magnetospheric plasma in producing pulsating aurora. It apters that the Coroniti-Kennel or micropulsation theory needs to be re-visited although the so-called flow cyclotron maser model seems to explain many of the characteristics of auroral pulsations.展开更多
In this paper, solute concentration and precipitate content in A2024 aluminum alloy are adjusted by solution treatment (ST) at different temperatures and tensile experiments on these treated specimens are carried ou...In this paper, solute concentration and precipitate content in A2024 aluminum alloy are adjusted by solution treatment (ST) at different temperatures and tensile experiments on these treated specimens are carried out. It is found that the temperature of solution treatment (ST temperature) has a remarkable influence on the amplitude of the serrated flow and the propagation characteristics of shear bands. These results are due to the effects of solute atoms and precipitates on dynamic strain aging (DSA). When ST temperature is higher than 300 ℃, solute concentration is relatively high and solute cloud is a key factor of DSA. When ST temperature is lower than 300 ℃, precipitate content is relatively high and the mechanism of DSA is determined by precipitates.展开更多
A total of 34 thunderstorms around Shanghai and Wuhan of China are analyzed in order to determine the relationship between total lightning activity and precipitation particle characteristics.Precipitation particle con...A total of 34 thunderstorms around Shanghai and Wuhan of China are analyzed in order to determine the relationship between total lightning activity and precipitation particle characteristics.Precipitation particle concentration data are obtained from the 2A12 product of TRMM/TMI(Tropical Rainfall Measuring Mission/TRMM Microwave Image) and lightning activity data are from the TRMM/LIS(Lightning Imaging Sensor) and SAFIR3000(Surveillance et Alerte Founder par Interferometric Radioelectirque).On a spatial scale of 0.1°×0.1°,a weak spatial relationship is found between total lightning and the vertically integrated content(VIC) of precipitation particles(cloud water,precipitation water,cloud ice,and precipitation ice). A strong power relationship is identified between the lightning density(D_(30);fl km^(-2) min^(-1)),relative to a rainfall intensity threshold value of 30 mm h^(-1),and the maximum rainfall intensity(R_(max);mm h^(-1));the obtained regression equation is R_(max) = 23.10D_(30)^(0.18) + 11,with a correlation coefficient of 0.841.Lightning frequency shows a significant linear correlation with the contents and covering areas of precipitation particles (in which the VICs exceed threshold values).Furthermore,ice particles above the -10℃level exhibit a stronger correlation with lightning activity than those above the 0℃level or the integrated ice particles at all levels.The results demonstrate that the particles responsible for the most significant charging process and lightning activity are restricted by the threshold value of VIC among the particles,which reflects the demand of the charging process on dynamic characteristics.The obtained fitting equations can provide useful reference for assimilating lightning information into numerical prediction models so as to improve the reliability of forecast results.The particle products from the prediction models are also helpful in estimating the occurrence of lightning activity within 2-6-h periods.展开更多
Used the ionization theory of the cosmic ray charged particles in the polar ionosphere, the influence of the cosmic ray Forbush decrease on the low ionosphere in the polar region is studied in this paper. The relation...Used the ionization theory of the cosmic ray charged particles in the polar ionosphere, the influence of the cosmic ray Forbush decrease on the low ionosphere in the polar region is studied in this paper. The relationship between the Forbush decrease and the cosmic noise absorption during the polar night is analysed based on the data recorded by a Riometer at Antarctic Zhongshan Station (69° 22'24'S, 76°22'40'E). The relation of between the cosmic ray Forbush decrease and the cosmic noise absorption is well interpreted by means of the ionizaiotn theory.展开更多
The EISCAT data are used to confirm the important role of precipitation particles in the ionization rate in the auroral region. The height range of the effective ionization is quite different for particles with differ...The EISCAT data are used to confirm the important role of precipitation particles in the ionization rate in the auroral region. The height range of the effective ionization is quite different for particles with different energies. On the other hand, an enhancement of magnetospheric convection often results in decreasing of electron density, N , in the F layer. During January 28 ̄29,1985, the disturbed profiles of N were very typical, in which N m(E layer) N (F layer) and N decreased with height above 147 km. This phenomenan is caused by both energetic particles and intensive convection. During the period of February 16 ̄17, 1993, however, the N (F layer) increased extremely, while N (E layer) remained low. This is also a typical profile, but is opposite to the former one. In this case,the particles with lower energy (<1 keV) in the magnetosheath enter directly the high latitude ionosphere through the cusp,and can contribute significantly to the F layer ionization content.展开更多
Numerical simulations of electrostatic precipitators featuring wire and spiked electrode designs were performed to determine particle behavior and separation efficiency. The applied-voltage mechanism that alters the f...Numerical simulations of electrostatic precipitators featuring wire and spiked electrode designs were performed to determine particle behavior and separation efficiency. The applied-voltage mechanism that alters the flow structure of particles through ionic winds and mean electric fields are revealed. Numeri- cal studies throughout the past years have shown these structures for channel and pipe configurations. However, less attention was given to field averaging for the ni,~r-product and electric field. Our study focuses on this averaging and illustrates relevant differences between multidimensional setups concern- ~ng these fields. Turbulence was modeled using the Reynolds-averaged Navier-Stokes equations with a second-order Reynolds-stress-model closure. A high three-dimensionality of the ionic wind-induced turbulence is presented. This leads to an increase in the submicron-particle precipitation rate. The results confirm the dependence of separation efficiency on particle density and permittivity, thereby showing the advantages of spiked wires compared with wire-plate setups used in electrostatic precipitators.展开更多
In this work,dopamine methacrylamide(DMA)and eugenyl methacrylate(EMA)were used to synthesize polymeric particles of Poly(DMA-co-EMA)by free radical precipitation copolymerization.These two monomers were modified from...In this work,dopamine methacrylamide(DMA)and eugenyl methacrylate(EMA)were used to synthesize polymeric particles of Poly(DMA-co-EMA)by free radical precipitation copolymerization.These two monomers were modified from dopamine(consisting of the catechol moieties adhering to various materials)and eugenol(with antibacterial property),respectively.The proton nuclear magnetic resonance(^(1)H NMR)and Fourier transform infrared(FT-IR)spectroscopy were applied to confirm the successful synthesis of the two monomers and copolymer.The scanning electron microscope(SEM)images showed the size and morphology of the polymer particles.The results indicated that regular particles with uniform size could be obtained with a monomer feeding ratio of 5꞉5.The results of antibacterial activity test indicated that the obtained polymer particles have an antibacterial rate over 90%to Eugenia coli.展开更多
基金the National Natural Science Foundation o China(40404015, 40390150)the Open Foundation of the Key Laboratory o Geospace Environment and Geodesy of Ministry of Education
文摘The Graz Ionospheric Flux Tube Simulations (GIFTS) has been improved. The improved GIFTS model was used to numerically investigate the energy particle precipitation on the distribution of electron density in the ionospheric cusp foot-point region under conditions of large plasma convection during magnetic storm. After including the effects of low energy incident particles, the ionospheric electron densities increase remarkably above altitude of -250 km, showing a peak at about 350 km. The percent enhancements of electron densities increase gradually with altitude, exceed- ing 60% near the upper boundary of the calculation. The calculated ionospheric F2-peak was remarkably enhanced and lifted up by the incident low energy electrons.
基金supported by the National Basic Research Program of China(Grant Nos.2012CB957800,2011CB811400)the National Hi-Tech Research and Development Program of China(Grant No.2010AA121000)the National Natural Science Foundation of China(Grant Nos.41274147,41204102)
文摘Based on the auroral electron/ion precipitation boundary database observed by the DMSP satellites during 1984–2009, the characteristics of the nightside equatorial boundaries of the electron precipitation(B1E) and the ion precipitation(B1I) in the Northern/Southern Hemispheres(NH/SH) are statistically investigated. The results show: That most of the boundaries are located between magnetic latitude(MLAT) of 60°–70° with the mean MLAT for B1E/B1 I to be 64.30°N/63.22°N and 64.48°S/63.26°S in the NH and SH, respectively, indicating that B1 E and B1 I in both hemispheres are located in conjugated magnetic field lines with B1 E ~1.2° poleward of B1I; that the MLAT of B1 E and B1 I in both hemispheres shift to lower MLAT(from ~70° to ~55°) as geomagnetic activity increases; that MLAT of both B1 E and B1 I and their differences slowly decrease from dusk to midnight with some difference in both hemispheres during different levels of geomagnetic activities; that B1 E and B1 I in both hemisphere decrease linearly with Kp and exponentially with Dst, AE, and SYM-H, respectively, demonstrating that auroral particle precipitation is closely related with geomagnetic activity; that in different magnetic local time(MLT) sectors, the changing rates of the boundaries with Kp are different, and the rates of B1 E are generally larger than that of B1 I, implying that the difference between B1 E and B1 I reduce with increasing geomagnetic activity. Compared with previous studies, the statistical results based on the long-term large database in this paper can well reflect the properties of the equatorial boundaries of auroral precipitation and may be used for physical modeling or space weather forecasting in future.
文摘Y_2O_3 ultrafine particles have been prepared by means of precipitation in Japan and U.S.A., and ultrafine particles of rare earth oxide have been prepared with dicarboxyl precipitate by Wang Zenglin et al. It has not been reported, however, to prepare La_2O_3 ultrafine particles with urea as the hydrolytic agent. This method is easy to operate, and the materials are cheap and easily available, besides, it is easy to obtain homogeneous spherical precursors of ultrafine particles. The present, paper describes the preparation of La_2O_3 ultrafine particles with urea as hydrolytic agent, and observes some of its characteristics.
基金jointly funded by the National Key R&D Program of China[grant numbers 2019YFC1510301 and 2018YFC1505702]the Basic Research Fund of the Chinese Academy of Meteorological Sciences[grant number 2020Z008].
文摘In recent years,the Cloud Imaging Probe(CIP)and Precipitation Imaging Probe(PIP)produced by Droplet Measurement Technologies(DMT)have been introduced by a number of meteorological research and operation centers in China.The supporting software provided by DMT,i.e.,PADS(Particle Analysis and Display System),cannot output detailed information on each individual particle,which definitely limits the in-depth utilization of cloud and precipitation particle image data in China.In this paper,particle-by-particle information was extracted by decompressing the CIP and PIP original particle image data,based on which a new definition of the dimension for nonspherical particles is proposed by using the area of the convex hull enclosing a particle to obtain the equivalent diameter of a circle with equal area.Based on the data detected during one flight in Inner Mongolia,the particle size distribution obtained using the new particle size definition and that used by the other four existing definitions are compared.The results show that the particle number concentration calculated using different particle size definitions can vary by up to an order of magnitude.The result obtained based on the new particle size definition is closest to that calculated with the area-equivalent diameter definition.
基金the State Key Development Program for Basic Research of China(2013CB632601)the National High Technology Research and Development Program of China(2011AA060704)+1 种基金the National Natural Science Foundation of China(21476236,91434126)the National Science Fund for Distinguished Young Scholars(21025627)
文摘The objective of this work is using the online measurement method to study the process of precipitation of nickel hydroxide in a single-feed semi-batch stirred reactor with an internal diameter ofD = 240mm. The effects of impeller speed, impeller type, impeller diameter and feed location on the mean particle size d43 and particle size distribution (PSD) were investigated, d43 and PSD were measured online using a Malvern Insitec Liquid Pro- cess Sizer every 20 s. It was found that d43 varied between 13 kwh and 26 lain under different operating conditions, and it decreased with increasing impeller diameter. When feeding at the off-bottom distance of D/2 under lower impeller speeds, d43 was significantly smaller than that at D/3. PSDs were slightly influenced by operating conditions.
基金supported by the National Natural Science Foundation of China(Grant No.41375155)the National Basic Program of China(973)(Grant No.2013CB955800)the China Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201306005)
文摘Precipitation scavenging of aerosol particles is an important removal process in the atmosphere that can change aerosol physical and optical properties. This paper analyzes the changes in aerosol physical and optical properties before and after four rain events using in situ observations of mass concentration, number concentration, particle size distribution, scattering and absorption coefficients of aerosols in June and July 2013 at the Xianghe comprehensive atmospheric observation station in China. The results show the effect of rain scavenging is related to the rain intensity and duration, the wind speed and direction. During the rain events, the temporal variation of aerosol number concentration was consistent with the variation in mass concentration, but their size-resolved scavenging ratios were different. After the rain events, the increase in aerosol mass concentration began with an increase in particles with diameter &lt;0.8 μm [measured using an aerodynamic particle sizer(APS)], and fine particles with diameter &lt;0.1 μm [measured using a scanning mobility particle sizer(SMPS)]. Rainfall was most efficient at removing particles with diameter ~0.6 μm and greater than 3.5 μm. The changes in peak values of the particle number distribution(measured using the SMPS) before and after the rain events reflect the strong scavenging effect on particles within the 100–120 nm size range. The variation patterns of aerosol scattering and absorption coefficients before and after the rain events were similar, but their scavenging ratios differed, which may have been related to the aerosol particle size distribution and chemical composition.
基金supported by the National Key R&D Program of China (Grant No. 2022YFF0503700)the special found of Hubei Luojia Laboratory (220100011)supported by the Dragon 5 cooperation 2020-2024 (project no. 59236)
文摘In this study, we provide the first detailed analysis of variations in the spacecraft potential (Vs) of the three Swarm satellites, which are flying at about 400-500 km. Unlike previous studies that have investigated extreme charging events, usually with spacecraft potentials as negative as −100 V, this study is focused on variations of Swarm Vs readings, which fall within a few negative volts. The Swarm observations show that spacecraft at low Earth orbital (LEO) altitudes are charged only slightly negatively, varying between −7 V and 0 V, with the majority of recorded potentials at these altitudes clustering close to −2 V. However, a second peak of Vs data is found at −5.5 V, though the event numbers for these more-negative observations are less, by an order of magnitude, than for incidents near the −2 V peak. These two distinct Vs peaks suggest two different causes. We have thus divided the Swarm spacecraft Vs data into two categories: less-negatively charged (−5 < Vs < 0 V) and more-negatively-charged (−6.5 < Vs < −5 V). These two Vs categories exhibit different spatial and temporal distributions. The Vs observations in the first category remain relatively closer to 0 V above the magnetic equator, but become much more negative at low and middle latitudes on the day side;at high latitudes, these first-category Vs readings are relatively more-negative during local summer. Second-category Vs events cluster into two bands at the middle latitudes (between ±20°-50° magnetic latitude), but with slightly more negative readings at the South Atlantic Anomaly (SAA) region;at high latitudes, these rarer but more-negative second-category Vs events exhibit relatively more-negative values during local winter, which is opposite to the seasonal pattern seen in the first category. By comparing Vs data to the distributions of background plasma density at Swarm altitudes, we find for the first category that more-negative Vs readings are recorded at regions with higher background plasma density, while for the second category the more-negative Vs data are observed at regions with lower background plasma density. This can be explained as follows: the electron and ion fluxes incident on Swarm surface, whose differences determine the potential of Swarm, are dominated by the background “cold” plasma (due to ionization) and “hot” plasma (due to precipitated particles from magnetosphere) for the two Vs categories, respectively.
基金supported by the Chinese Polar Environment Comprehensive Investigation and Assessment Programs (Grant nos. CHINARE 2017-04-01, and 2017-02-04)National Natural Science Foundation of China (Grant nos. 41274164, 41374159, 41431072, and 41274148)+1 种基金Pudong Development of Science and Technology Program (Grant no. Pkj2013-z01)Top-Notch Young Talents Program of China
文摘It has been more than 30 years since the first Chinese Antarctic Expedition took place. Polar upper atmospheric observations started at this time. First began at Great Wall Station and then at Zhongshan Station in Antarctica, and later in the Arctic at Yellow River Station, Kjell Henriksen Observatory on Svalbard, and at the China-Iceland Joint Aurora Observatory in Iceland. In this paper, we reviewed the advances in polar upper atmosphere physics (UAP) based on the Chinese national Arctic and Antarctic research over the last five years. These included newly deployed observatories and research instruments in the Arctic and Antarctic; and new research findings, from grotmd-based observations, about polar ionosphere dynamics, aurora and particle precipitation, polar plasma convection, geomagnetic pulsations and space plasma waves, space weather in the polar regions, simulations of the polar ionosphere-magnetosphere. In conclusion, suggestions were made for future polar upper atmosphere physics research in China.
基金This research was funded by the Sichuan Science and Technology Program(no.2019YJ0188)the National Natural Science Foundation of China(nos.61671116,61771096,11905026)+2 种基金the National Key Research and Development Program of China(no.2019YFA0210202)Fundamental Research Funds for the Central Universities(nos.ZYGX2019Z006,ZYGX2019J012)We are grateful to the EISCAT Scientific Association for providing the PMSE experimental data(http://portal.eiscat.se/schedule/schedule.cgi).The EISCAT Scientific Association is supported by China(China Research Institute of Radio Wave Propagation),Finland(Suomen Akatemia of Finland),Japan(the National Institute of Polar Research of Japan and Institute for Space-Earth Environmental Research at Nagoya University),Norway(Norges Forskningsråd of Norway),Sweden(the Swedish Research Council),and the UK(the Natural Environment Research Council).We also acknowledge the China Scholarship Council.
文摘Polar mesosphere summer echoes(PMSEs)are very strong radar echoes in the polar mesopause in local summer.Here we present the frequency dependence of the volume reflectivity and the effect of energetic particle precipitation on modulated PMSEs by using PMSEs observations carried out by European Incoherent SCATter(EISCAT)heating equipment simultaneously with very high frequency(VHF)radar and ultra high frequency(UHF)radar on 12 July 2007.According to the experimental observations,the PMSEs occurrence rate at VHF was much higher than that at UHF,and the altitude of the PMSEs maximum observed at VHF was higher than that at UHF.Overlapping regions were observed by VHF radar between high energetic particle precipitation and the PMSEs.In addition,highfrequency heating had a very limited impact on PMSEs when the UHF electron density was enhanced because of energetic particle precipitation.In addition,an updated qualitative method was used to study the relationship between volume reflectivity and frequency.The volume reflectivity was found to be inversely proportional to the fourth power of radar frequency.The theoretical and experimental results provide a definitive data foundation for further analysis and investigation of the physical mechanism of PMSEs.
基金Supported by the National Natural Science Foundation of China!(496 74241)the Research Fund for the DoctoralProgram of High
文摘Storm-time changes of main plasma parameters in the auroral ionosphere are analyzed for two intense storms occurring on May 15, 1997 and Sept. 25, 1998, with emphasis on their relationship to the solar wind dynamic pressure and the IMFB z component. Strong hard particle precipitation occurred in the initial phase for both storms, associated with high solar wind dynamical pressure. During the recovery phase of the storms, some strong particle precipitation was neither concerned with high solar wind pressure nor southward IMFB z. Severe negative storm effects depicted by electron density depletion appeared in theF-region during the main and recovery phase of both storms, caused by intensive electric field-related strong Joule/frictional heating when IMF was largely southward. The ion temperature behaved similarly inE-andF-region, but the electron temperature did quite different, with a strong increase in the lowerE-region relating to plasma instability excited by strong electric field and a slight decrease in theF-region probably concerning with a cooling process. The field-aligned ion velocity was high and apparently anticorrelated with the northward component of the ion convection velocity.
文摘In this review, the observational facts about pulsating aurorae are summarized and discussed in the frame of the recent develpment of the theories which intend to explain the mechanism of auroral pulsations. Although new data are available some key observations in the magnetosphere are still missing in order to identify the wave mode to precipitate electrons into the atmosphere and in order to understand the role of magnetospheric plasma in producing pulsating aurora. It apters that the Coroniti-Kennel or micropulsation theory needs to be re-visited although the so-called flow cyclotron maser model seems to explain many of the characteristics of auroral pulsations.
基金supported by the National Natural Science Foundation of China (Grant Nos 10872189 and 10732080)
文摘In this paper, solute concentration and precipitate content in A2024 aluminum alloy are adjusted by solution treatment (ST) at different temperatures and tensile experiments on these treated specimens are carried out. It is found that the temperature of solution treatment (ST temperature) has a remarkable influence on the amplitude of the serrated flow and the propagation characteristics of shear bands. These results are due to the effects of solute atoms and precipitates on dynamic strain aging (DSA). When ST temperature is higher than 300 ℃, solute concentration is relatively high and solute cloud is a key factor of DSA. When ST temperature is lower than 300 ℃, precipitate content is relatively high and the mechanism of DSA is determined by precipitates.
基金Supported by the National Natural Science Foundation of China under Grant No.41005006the Special Projects for Public Welfare(Meteorology) of China Meteorological Administration under Grant No.GYHY200806014+1 种基金the National Science and Technology Supporting Program under Grant No.2008BAC36B04the New Meteorological Technology Promoting Program of China Meteorological Administration under Grant No.CMATG2008M20
文摘A total of 34 thunderstorms around Shanghai and Wuhan of China are analyzed in order to determine the relationship between total lightning activity and precipitation particle characteristics.Precipitation particle concentration data are obtained from the 2A12 product of TRMM/TMI(Tropical Rainfall Measuring Mission/TRMM Microwave Image) and lightning activity data are from the TRMM/LIS(Lightning Imaging Sensor) and SAFIR3000(Surveillance et Alerte Founder par Interferometric Radioelectirque).On a spatial scale of 0.1°×0.1°,a weak spatial relationship is found between total lightning and the vertically integrated content(VIC) of precipitation particles(cloud water,precipitation water,cloud ice,and precipitation ice). A strong power relationship is identified between the lightning density(D_(30);fl km^(-2) min^(-1)),relative to a rainfall intensity threshold value of 30 mm h^(-1),and the maximum rainfall intensity(R_(max);mm h^(-1));the obtained regression equation is R_(max) = 23.10D_(30)^(0.18) + 11,with a correlation coefficient of 0.841.Lightning frequency shows a significant linear correlation with the contents and covering areas of precipitation particles (in which the VICs exceed threshold values).Furthermore,ice particles above the -10℃level exhibit a stronger correlation with lightning activity than those above the 0℃level or the integrated ice particles at all levels.The results demonstrate that the particles responsible for the most significant charging process and lightning activity are restricted by the threshold value of VIC among the particles,which reflects the demand of the charging process on dynamic characteristics.The obtained fitting equations can provide useful reference for assimilating lightning information into numerical prediction models so as to improve the reliability of forecast results.The particle products from the prediction models are also helpful in estimating the occurrence of lightning activity within 2-6-h periods.
文摘Used the ionization theory of the cosmic ray charged particles in the polar ionosphere, the influence of the cosmic ray Forbush decrease on the low ionosphere in the polar region is studied in this paper. The relationship between the Forbush decrease and the cosmic noise absorption during the polar night is analysed based on the data recorded by a Riometer at Antarctic Zhongshan Station (69° 22'24'S, 76°22'40'E). The relation of between the cosmic ray Forbush decrease and the cosmic noise absorption is well interpreted by means of the ionizaiotn theory.
文摘The EISCAT data are used to confirm the important role of precipitation particles in the ionization rate in the auroral region. The height range of the effective ionization is quite different for particles with different energies. On the other hand, an enhancement of magnetospheric convection often results in decreasing of electron density, N , in the F layer. During January 28 ̄29,1985, the disturbed profiles of N were very typical, in which N m(E layer) N (F layer) and N decreased with height above 147 km. This phenomenan is caused by both energetic particles and intensive convection. During the period of February 16 ̄17, 1993, however, the N (F layer) increased extremely, while N (E layer) remained low. This is also a typical profile, but is opposite to the former one. In this case,the particles with lower energy (<1 keV) in the magnetosheath enter directly the high latitude ionosphere through the cusp,and can contribute significantly to the F layer ionization content.
文摘Numerical simulations of electrostatic precipitators featuring wire and spiked electrode designs were performed to determine particle behavior and separation efficiency. The applied-voltage mechanism that alters the flow structure of particles through ionic winds and mean electric fields are revealed. Numeri- cal studies throughout the past years have shown these structures for channel and pipe configurations. However, less attention was given to field averaging for the ni,~r-product and electric field. Our study focuses on this averaging and illustrates relevant differences between multidimensional setups concern- ~ng these fields. Turbulence was modeled using the Reynolds-averaged Navier-Stokes equations with a second-order Reynolds-stress-model closure. A high three-dimensionality of the ionic wind-induced turbulence is presented. This leads to an increase in the submicron-particle precipitation rate. The results confirm the dependence of separation efficiency on particle density and permittivity, thereby showing the advantages of spiked wires compared with wire-plate setups used in electrostatic precipitators.
基金National Key Research and Development Program of China(No.2016YFC1100404)State Key Laboratory of Polymer Materials Engineering(No.sklpme2018-3-10)Fundamental Research Funds for Central Universities(No.YJ201854).
文摘In this work,dopamine methacrylamide(DMA)and eugenyl methacrylate(EMA)were used to synthesize polymeric particles of Poly(DMA-co-EMA)by free radical precipitation copolymerization.These two monomers were modified from dopamine(consisting of the catechol moieties adhering to various materials)and eugenol(with antibacterial property),respectively.The proton nuclear magnetic resonance(^(1)H NMR)and Fourier transform infrared(FT-IR)spectroscopy were applied to confirm the successful synthesis of the two monomers and copolymer.The scanning electron microscope(SEM)images showed the size and morphology of the polymer particles.The results indicated that regular particles with uniform size could be obtained with a monomer feeding ratio of 5꞉5.The results of antibacterial activity test indicated that the obtained polymer particles have an antibacterial rate over 90%to Eugenia coli.