期刊文献+
共找到621篇文章
< 1 2 32 >
每页显示 20 50 100
PARTICULATE SIZE EFFECTS IN THE PARTICLE-REINFORCED METAL-MATRIX COMPOSITES 被引量:13
1
作者 魏悦广 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第1期45-58,共14页
The influences of I,article size on the mechanical properties of the particulate metal matrix composite;are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly u... The influences of I,article size on the mechanical properties of the particulate metal matrix composite;are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly using the conventional elastic-plastic theory. It is because that no length scale parameters are involved in the conventional theory. In the present research, using the strain gradient plasticity theory, a systematic research of the particle size effect in the particulate metal matrix composite is carried out. The roles of many composite factors, such as: the particle size, the Young's modulus of the particle, the particle aspect ratio and volume fraction, as well as the plastic strain hardening exponent of the matrix material, are studied in detail. In order to obtain a general understanding for the composite behavior, two kinds of particle shapes, ellipsoid and cylinder, are considered to check the strength dependence of the smooth or non-smooth particle surface. Finally, the prediction results will be applied to the several experiments about the ceramic particle-reinforced metal-matrix composites. The material length scale parameter is predicted. 展开更多
关键词 size effect strain gradient plasticity the particle-reinforced metal-matrix composite
下载PDF
Effective Elastic Properties of 3-Phase Particle Reinforced Composites with Randomly Dispersed Elastic Spherical Particles of Different Sizes Dedicated to Professor Karl Stark Pister for his 95th birthday 被引量:1
2
作者 Yu-Fu Ko Jiann-Wen Woody Ju 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第12期1305-1328,共24页
Higher-order multiscale structures are proposed to predict the effective elastic properties of 3-phase particle reinforced composites by considering the probabilistic spherical particles spatial distribution,the parti... Higher-order multiscale structures are proposed to predict the effective elastic properties of 3-phase particle reinforced composites by considering the probabilistic spherical particles spatial distribution,the particle interactions,and utilizing homogenization with ensemble volume average approach.The matrix material,spherical particles with radius a1,and spherical particles with radius a2,are denoted as the 0th phase,the 1st phase,and the 2nd phase,respectively.Particularly,the two inhomogeneity phases are different particle sizes and the same elastic material properties.Improved higher-order(in ratio of spherical particle sizes to the distance between the centers of spherical particles)bounds on effective elastic properties of 3-phase particle reinforced proposed Formulation II and Formulation I derive composites.As a special case,i.e.,particle size of the 1st phase is the same as that of the 2nd phase,the proposed formulations reduce to 2-phase formulas.Our theoretical predictions demonstrate excellent agreement with selected experimental data.In addition,several numerical examples are presented to demonstrate the competence of the proposed frameworks. 展开更多
关键词 particle reinforced composites MICROMECHANICS spherical particle interactions ensemble volume average HOMOGENIZATION probabilistic spatial distribution higher-order bounds multiscale
下载PDF
Microstructure and wear characteristics of ATZ ceramic particle reinforced gray iron matrix surface composites 被引量:3
3
作者 Xue Ma Liang-feng Li +3 位作者 Fan Zhang Zu-hua Zhang Hao Wang En-ze Wang 《China Foundry》 SCIE 2018年第3期167-172,共6页
The alumina toughened zirconia(ATZ) ceramic particle reinforced gray iron matrix surface composite was successfully manufactured by pressureless infi ltration. The porous preform played a key role in the infi ltrating... The alumina toughened zirconia(ATZ) ceramic particle reinforced gray iron matrix surface composite was successfully manufactured by pressureless infi ltration. The porous preform played a key role in the infi ltrating progress. The microstructure was observed by scanning electron microscopy(SEM); the phase constitutions was analyzed by X-ray diffraction(XRD); and the hardness and wear resistance of selected specimens were tested by hardness testing machine and abrasion testing machine, respectively. The addition of high carbon ferrochromium powders leads to the formation of white iron during solidifi cation. The wear volume loss rates of ATZ ceramic particle reinforced gray iron matrix surface composite decreases fi rst, and then tends to be stable. The wear resistance of the composite is 2.7 times higher than that of gray iron matrix. The reason is a combination of the surface hardness increase of gray iron matrix and ATZ ceramic particles and alloy carbides protecting effect on gray iron matrix. 展开更多
关键词 metal-matrix SURFACE composites pressureless infiltrating particle-reinforcEMENT SURFACE ALLOYING WEAR testing
下载PDF
ANALYTICAL SOLUTIONS FOR ELASTOSTATIC PROBLEMS OF PARTICLE-AND FIBER-REINFORCED COMPOSITES WITH INHOMOGENEOUS INTERPHASES
4
作者 段慧玲 王建祥 +1 位作者 黄筑平 黄红波 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第3期336-344,共9页
By transforming the governing equations for displacement components into Riccati equations, analytical solutions for displacements, strains and stresses for Representive Volume Elements (RVEs) of particle_ and fiber_r... By transforming the governing equations for displacement components into Riccati equations, analytical solutions for displacements, strains and stresses for Representive Volume Elements (RVEs) of particle_ and fiber_reinforced composites containing inhomo geneous interphases were obtained. The analytical solutions derived here are new and general for power_law variations of the elastic moduli of the inhomogeneous interphases. Given a power exponent, analytical expressions for the bulk moduli of the composites with inho mogeneous interphases can be obtained. By changing the power exponent and the coefficients of the power terms, the solutions derived here can be applied to inhomogeneous interphases with many different property profiles. The results show that the modulus variation and the thickness of the inhomogeneous interphase have great effect on the bulk moduli of the composites. The particle will exhibit a sort of “size effect”, if there is an interphase. 展开更多
关键词 inhomogeneous interphase particle-reinforced composite fiber-reinforced composite analytical solution bulk modulus
下载PDF
Computer Simulation of the Indentation Creep Tests on Particle-Reinforced Composites
5
作者 Zhufeng YUE1,2)1)Department of Engineering Mechanics, Northwestern Polytechnical University, Xi’an 710072, China2)Institute of Materials, Ruhr University, 44780 Bochum, Germany 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第4期335-340,共6页
A systematical simulation has been carried out on the indentation creep test on particle-reinforced composites. The deformation, failure mechanisms and life are analyzed by three reasonable models. The following five ... A systematical simulation has been carried out on the indentation creep test on particle-reinforced composites. The deformation, failure mechanisms and life are analyzed by three reasonable models. The following five factors have been considered simultaneously: creep property of the particle, creep property of the matrix, the shape of the particle, the volume fraction of the particle and the size (relative size to the particle) of the indentation indenter. For all the cases, the power law respecting to the applied stress can be used to model the steady indentation creep depth rate of the indenter, and the detail expressions have been presented. The computer simulation precision is analyzed by the two-phase model and the three-phase model. Two places of the stress concentration are found in the composites. One is ahead of the indentation indenter, where the high stress state is deduced by the edge of the indenter and will decrease rapidly near to a steady value with the creep time. The other one is at the interface, where the high stress state is deduced by the misfit of material properties between the particles and matrix. It has been found that the creep dissipation energy density other than a stress parameter can be used to be the criterion to model the debonding of the interfaces. With the criterion of the critical creep dissipation energy density, a power law to the applied stress with negative exponent can be used to model the failure life deduced by the debonding of interfaces. The influences of the shape of the particles and the matching of creep properties of particle and matrix can be discussed for the failure. With a crack model, the further growth of interface crack is analyzed, and some important experimental phenomena can be predicted. The failure mechanism which the particle will be punched into matrix has been also discussed. The critical differences between the creep properties of the particles and matrix have been calculated, after a parameter has been defined. In the view of competition of failure mechanisms, the best matching of the creep properties of the two phases and the best shape of the particles are discussed for the composite design. 展开更多
关键词 Indentation creep test particle-reinforced composites Computer simulation DEFORMATION FAILURE
下载PDF
Microstructure and hardness of WC-Co particle reinforced iron matrix surface composite 被引量:4
6
作者 Zhang Peng Zeng Shaolian +1 位作者 Zhang Zhiguo Li Wei 《China Foundry》 SCIE CAS 2013年第6期374-379,共6页
In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure ... In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure and hardness were determined by means of energy dispersive spectrometry(EDS), electron probe microanalysis(EPMA), scanning electron microscope(SEM) and Rockwell hardness measurements. It is determined that the obtained composite layer is about 15 mm thick with a WC-Co particle volumetric fraction of ~38%. During solidification, interface reaction takes place between WC-Co particles and high chromium cast iron. Melting and dissolving of prefabricated particles are also found, suggesting that local Co melting and diffusion play an important role in promoting interface metallurgical bonding. The composite layer is composed of ferrite and a series of carbides, such as(Cr, W, Fe)23C6, WC, W2C, M6C and M12C. The inhomogeneous hardness in the obtained composite material shows a gradient decrease from the particle reinforced metal matrix composite layer to the matrix layer. The maximum hardness of 86.3 HRA(69.5 HRC) is obtained on the particle reinforced surface, strongly indicating that the composite can be used as wear resistant material. 展开更多
关键词 particle reinforcement INFILTRATION CASTING composite material high Cr cast IRON HARDNESS
下载PDF
Study on dry friction and wear resistance of a WC-Co particle reinforced iron matrix composite material 被引量:2
7
作者 Zhang Peng Zeng Shaolian +1 位作者 Zhang Zhiguo Li Wei 《China Foundry》 SCIE CAS 2013年第3期135-140,共6页
In order to select a suitable material for the rolling mill guide application, the dry sliding friction and wear resistance of a tungsten carbide combining cobalt (WC-Co) particle reinforced chromium cast iron composi... In order to select a suitable material for the rolling mill guide application, the dry sliding friction and wear resistance of a tungsten carbide combining cobalt (WC-Co) particle reinforced chromium cast iron composite material were studied. In particular, the wear resistance was discussed in detail. The results showed that the composite material demonstrates 25 times the wear resistance of high Cr cast iron, and 9 times the wear resistance of heat resistant steel. However, the average friction factor in the stable friction stage showed a relationship of μComposites/45#steel>μHigh chromium cast iron/45#steel>μHeat resistant steel/45 # steel. The wear resistance mechanism of the composite material was associated with the reinforcing particles, which protruded from the worn surface to bear the friction load when the matrix material surface was worn, thereby reducing the abrasive and adhesive wear. In addition, the matrix material possessed suitable hardness and toughness, providing a support to the reinforcements. 展开更多
关键词 particle reinforcement composite material high Cr cast iron friction and wear
下载PDF
Cavitation-erosion mechanism of laser cladded SiC particle reinforced metal matrix composite 被引量:2
8
作者 张春华 张松 +3 位作者 杨洪刚 朱圣龙 文效忠 才庆魁 《中国有色金属学会会刊:英文版》 CSCD 2005年第1期35-39,共5页
With 2 kW continuous wave Nd-YAG laser, SiC ceramic powder was laser-cladded on the AA6061 aluminium alloy surface. Within the range of process parameters investigated, the parameters were optimized to produce the SiC... With 2 kW continuous wave Nd-YAG laser, SiC ceramic powder was laser-cladded on the AA6061 aluminium alloy surface. Within the range of process parameters investigated, the parameters were optimized to produce the SiC_p reinforced metal matrix composites(MMC) modified layer on AA6061 alloy surface. After being treated, the modified layer is crack-free, porosity-free, and has good metallurgical bond with the substrate. The microstructure and chemical composition of the modified layer were analyzed by such detection devices as scanning electronic microscope(SEM-EDX) and X-ray diffractometer(XRD). The performance of electrochemical corrosion and cavitation erosion and their mechanism were estimated by the microhardness tester, potentiostat and (ultrasonic-)(induced) cavitation device. 展开更多
关键词 铝合金 激光镀膜 金属模版复合物 粒子加固 气蚀酌
下载PDF
Creep behavior on Ag particle reinforced SnCu based composite solder joints 被引量:1
9
作者 闫焉服 朱锦洪 +2 位作者 陈拂晓 贺俊光 杨涤心 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第5期1116-1120,共5页
SnCu solder is one of the most promising substitutes of SnPb solder, but its creep resistance is worse than that of the other lead-free solders. Particle-reinforcement is a way to improve the creep resistance of solde... SnCu solder is one of the most promising substitutes of SnPb solder, but its creep resistance is worse than that of the other lead-free solders. Particle-reinforcement is a way to improve the creep resistance of solder alloys and cause much more attention than before. A novel Ag particles reinforced SnCu based composite solder is formed and the influence of stress on creep behavior of the composite solder is investigated. Results indicate that the creep resistance of solder joints is superior to that of the SnCu solder joints. Creep rupture lifetime of solder joints decreases gradually with stress increasing. And the creep rupture lifetime of the composite solder joints falls down faster than that of the matrix solder joints. 展开更多
关键词 复合焊料 SnCu 蠕变断裂 应力
下载PDF
Damage analysis for particle reinforced metal matrix composite by ultrasonic method 被引量:2
10
作者 杨治国 龙士国 《中国有色金属学会会刊:英文版》 CSCD 2006年第B02期652-655,共4页
The damage characteristic of particle reinforced metal matrix composite (PMMC) was studied by ultrasonic non-destructive evaluation method. After the sample was damaged induced by tensile load, the ultrasonic wave tha... The damage characteristic of particle reinforced metal matrix composite (PMMC) was studied by ultrasonic non-destructive evaluation method. After the sample was damaged induced by tensile load, the ultrasonic wave that propagated in the sample were collected. The damage parameter was defined by ultrasonic parameter and the wave signals were analyzed by correlation method. The results show that with the increase of tensile load, the damage parameter increases and the correlation coefficient decreases. The fracture section morphologies of PMMC under tensile load were observed by SEM. It is found that there are many concaves in the metal matrix. Therefore the damage evolution can be concluded. The initial damage is induced by void nucleation, growth and subsequent coalescence in the matrix or interface separation. 展开更多
关键词 颗粒增强金属基复合材料 损伤分析 超声法 非破坏性试验
下载PDF
Study on Diffusion Welding Parameters of Particle reinforced Aluminium Matrix Composite Al_2O_(3p) /6061Al
11
作者 刘黎明 牛济泰 韩立红 《Rare Metals》 SCIE EI CAS CSCD 1999年第4期299-304,共6页
Effects of diffusion welding process parameters on strength of welded joint based on particle reinforced aluminium matrix composite Al 2O 3p /6061Al have been studied through comparing with aluminium matrix allo... Effects of diffusion welding process parameters on strength of welded joint based on particle reinforced aluminium matrix composite Al 2O 3p /6061Al have been studied through comparing with aluminium matrix alloy. The mechanism for loss of joint strength has been analyzed. It should be pointed out that key processing parameters affecting the strength of joint was welding temperature. The high quality joint can be successfully obtained with appropriate diffusion welding parameters. 展开更多
关键词 particle reinforced aluminium matrix composite Diffusion welding Oxide film
下载PDF
Pulse-Impact on Microstructure of Liquid-Phase-Pulse-Impact Diffusion Welded Joints of Particle Reinforcement Aluminum Matrix Composites at Various Temperatures
12
作者 Kelvii Wei Guo 《Engineering(科研)》 2013年第7期567-576,共10页
Investigation was to study the influence of pulse-impact on microstructure of Liquid-Phase-Pulse-Impact Diffusion Welding (LPPIDW) welded joints of aluminum matrix composite SiCp/A356, SiCp/6061Al, Al2O3p/6061Al. Resu... Investigation was to study the influence of pulse-impact on microstructure of Liquid-Phase-Pulse-Impact Diffusion Welding (LPPIDW) welded joints of aluminum matrix composite SiCp/A356, SiCp/6061Al, Al2O3p/6061Al. Results showed that under the effect of pulse-impact: 1) the interface state between reinforcement particle (SiC, Al2O3) and matrix was prominently;2) the initial pernicious contact-state of reinforcement particles was changed from reinforcement (SiC, Al2O3)/reinforcement (SiC, Al2O3) to reinforcement (SiC, Al2O3)/matrix/ reinforcement (SiC, Al2O3);3) the density of dislocation in the matrix neighboring to and away from the interface in the matrix was higher than its parent composite;and 4) the intensively mutual entwisting of dislocation was occurred. Studies illustrated that: 1) deformation was mainly occurred in the matrix grain;and 2) under the effect of pulse-impact, the matrices around reinforcement (SiC, Al2O3) particles engendered intensive aberration offered a high density nucleus area for matrix crystal, which was in favor of forming nano-grains and improved the properties of the successfully welded composite joints. 展开更多
关键词 Aluminum Matrix composite particle reinforcement Pulse-Impact MICROSTRUCTURE Diffusion Welding
下载PDF
A Review on Particle Reinforced Mg Matrix Composites Fabricated by Powder Metallurgy
13
作者 Zhiyuan Liu Li Jin +4 位作者 Jian Zeng Fulin Wang Fenghua Wang Shuai Dong Jie Dong 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第3期391-400,共10页
This paper provides a comprehensive review of research progress in particle-reinforced Mg matrix composites prepared via powder metallurgy.The article discusses different strategies,such as micro-sized,nano-sized part... This paper provides a comprehensive review of research progress in particle-reinforced Mg matrix composites prepared via powder metallurgy.The article discusses different strategies,such as micro-sized,nano-sized particles,and multi-particle hybridization,which has been employed to enhance the performance of the composites.In addition,a range of preparation techniques that optimize the dispersion of the reinforcing particles are summarized.The paper also highlights how the different configurations between the reinforcements and matrix alloy impact the composites’performance.Finally,the article outlines the prospects of particles reinforced Mg matrix composites fabricated via powder metallurgy and recommends modification methods that could be explored to further develop these materials for various applications. 展开更多
关键词 Magnesium matrix composites reinforcing particle Powder metallurgy Mechanical properties CONFIGURATION
原文传递
Fabrication and densification enhancement of SiC-particulate-reinforced copper matrix composites prepared via the sinter-forging process 被引量:1
14
作者 Mohammadmehdi Shabani Mohammad Hossein Paydar Mohammad Mohsen Moshksar 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第9期934-939,共6页
The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an ine... The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an inert Ar atmosphere. The influence of sinter-forging time, temperature, and compressive stress on the relative density and hardness of the prepared samples was systematically investigated and subsequently compared with that of the samples prepared by the conventional sintering process. The relative density and hardness of the composites were enhanced when they were prepared by the sinter-forging process. The relative density values of all Cu/SiCp composite samples were observed to decrease with the increase in SiC content. 展开更多
关键词 metallic matrix composites particle reinforced composites silicon carbide FORGING SINTERING bulk density
下载PDF
Pseudo-in-situ stir casting: a new method for production of aluminum matrix composites with bimodal-sized B_4C reinforcement 被引量:1
15
作者 Mohammad Raei Masoud Panjepour Mahmood Meratian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第8期981-990,共10页
A new method was applied to produce an Al-0.5wt%Ti-0.3wt%Zr/5vol%B_4C composite via stir casting with the aim of characterizing the microstructure of the resulting composite. For the production of the composite, large... A new method was applied to produce an Al-0.5wt%Ti-0.3wt%Zr/5vol%B_4C composite via stir casting with the aim of characterizing the microstructure of the resulting composite. For the production of the composite, large B4 C particles(larger than 75 μm) with no pre-heating were added to the stirred melt. Reflected-light microscopy, X-ray diffraction, scanning electron microscopy, field-emission scanning electron microscopy, laser particle size analysis, and image analysis using the Clemex software were performed on the cast samples for microstructural analysis and phase detection. The results revealed that as a consequence of thermal shock, B_4 C particle breakage occurred in the melt. The mechanism proposed for this phenomenon is that the exerted thermal shock in combination with the low thermal shock resistance of B_4 C and large size of the added B_4 C particles were the three key parameters responsible for B_4 C particle breakage. This breakage introduced small particles with sizes less than 10 μm and with no contamination on their surfaces into the melt. The mean particle distance measured via image analysis was approximately 60 μm. The coefficient of variation index, which was used as a measure of particle distribution homogeneity, showed some variations, indicating a relatively homogeneous distribution. 展开更多
关键词 metal matrix composites particle-reinforced composites boron carbide casting thermal shock
下载PDF
Thermal Expansion and Mechanical Properties of Middle Reinforcement Content SiCp/Al Composites Fabricated by PM Technology 被引量:1
16
作者 郝世明 谢敬佩 +3 位作者 WANG Aiqin WANG Wenyan LI Jiwen SUN Haoliang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第4期660-664,共5页
Middle reinforcement content SiCp/Al composites(Vp=30%, 35% and 40%) for precision optical systems applications were fabricated by powder metallurgy technology. The composites were free of porosity and SiC particles... Middle reinforcement content SiCp/Al composites(Vp=30%, 35% and 40%) for precision optical systems applications were fabricated by powder metallurgy technology. The composites were free of porosity and SiC particles distributed uniformly in the composites. The mean linear coefficients of thermal expansion(20-100 ℃) of SiCp/Al composites ranged from 11.6×10-6 to 13.3×10-6 K-1 and decreased with an increase in volume fraction of SiC content. The experimental coeffi cients of thermal expansion agreed well with predicted values based on Kerner's model. The Brinell hardness increased from 116 to 147, and the modulus increased from 99 to 112 GPa for the corresponding composites. The tensile strengths were higher than 320 MPa, but no signifi cant increasing trend between tensile strength and SiC content was observed. 展开更多
关键词 metal-matrix composites particle-reinforcement coefficient of thermal expansion mechanical properties powder metallurgy
下载PDF
Distribution and engulfment behavior of TiB_2 particles or clusters in wedge-shaped copper casting ingot 被引量:1
17
作者 孙靖 张晓波 +3 位作者 蔡庆 张亦杰 马乃恒 王浩伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期54-60,共7页
Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The... Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The experimental results show that the particle size distribution obeys two separate systems in the whole wedge-cast sample. Furthermore, it is found that the big clusters are pushed to the center of the wedge shaped sample and the single particle or small clusters consisting of few particles are engulfed into the α-Al in the area of the sample edge. The cluster degree of particles varies in different areas, and its value is 0.2 and 0.6 for the cluster fraction in the edge and in the center of the wedge sample, respectively. The cluster diameter does not obey the normal distribution but approximately obeys lognormal distribution in the present work. More importantly, in the whole sample, the particle size obeys two separate log-normal distributions. 展开更多
关键词 discontinuously reinforced aluminum matrix composites Ti B2 wedge-shaped copper mold casting particle distribution particle engulfment
下载PDF
Effect of sintering parameters on the microstructure and thermal conductivity of diamond/Cu composites prepared by high pressure and high temperature infiltration 被引量:6
18
作者 Hui Chen Cheng-chang Jia Shang-jie Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第2期180-186,共7页
Pure Cu composites reinforced with diamond particles were fabricated by a high pressure and high temperature (HPHT) infiltration technique. Their microstructural evolution and thermal conductivity were presented as ... Pure Cu composites reinforced with diamond particles were fabricated by a high pressure and high temperature (HPHT) infiltration technique. Their microstructural evolution and thermal conductivity were presented as a function of sintering parameters (temperature, pressure, and time). The improvement in interfacial bonding strength and the maximum thermM conductivity of 750 W/(m.K) were achieved at the optimal sintering parameters of 1200℃, 6 GPa and 10 min. It is found that the thermal conductivity of the composites depends strongly on sintering pressure. When the sintering pressure is above 6 GPa, the diamond skeleton is detected, which greatly contributes to the excellent thermal conductivity. 展开更多
关键词 metallic matrix composites particle reinforced composites COPPER diamonds INFILTRATION microstructuralevolution thermal conductivity
下载PDF
Microstructure of in situ Al_3Ti/6351Al composites fabricated with electromagnetic stirring and fluxes 被引量:5
19
作者 李桂荣 王宏明 +3 位作者 赵玉涛 陈登斌 陈刚 程晓农 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第4期577-583,共7页
The 6351 wrought aluminum alloy and K2TiF6-CaF2-LiCl components were selected as raw materials to fabricate in situ Al3Ti particulate reinforced aluminum alloy at 720℃via direct melt reaction method with electromagne... The 6351 wrought aluminum alloy and K2TiF6-CaF2-LiCl components were selected as raw materials to fabricate in situ Al3Ti particulate reinforced aluminum alloy at 720℃via direct melt reaction method with electromagnetic stirring(EMS).CaF2 and LiCl acted as fluxes to lower the reaction temperature of the system.It is shown that the electromagnetic stirring and fluxes accelerate the emulsion process of K2TiF6.Optical microscopy,scanning electron microscopy,transmission electron microscopy and energy dispersive spectrum were utilized to analyze the microstructure and components of composites.Compared to composites fabricated without EMS and fluxes,the sizes of endogenetic Al3Ti are refined from 10-15μm to 2-4μm,which are often accompanied with silicon element.The morphology of Al3Ti or Al3TiSi0.22 exhibits triangle,quadrilateral and other clumpy patterns. Because of the Ca elements from CaF2,the sizes of Mg2Si decrease from 8-10μm to 1-2μm due to the formation of Ca2Si. 展开更多
关键词 6351 AI alloy MICROSTRUCTURE in situ particle reinforced aluminum composites electromagnetic stirring FLUXES
下载PDF
Processing of nanostructured metallic matrix composites by a modified accumulative roll bonding method with structural and mechanical considerations 被引量:3
20
作者 Amir Hossein Yaghtin Erfan Salahinejad Ali Khosravifard 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第10期951-956,共6页
Particulate reinforced metallic matrix composites have attracted considerable attention due to their lightweight, high strength, high specific modulus, and good wear resistance. A1/B4C composite strips were produced i... Particulate reinforced metallic matrix composites have attracted considerable attention due to their lightweight, high strength, high specific modulus, and good wear resistance. A1/B4C composite strips were produced in this work by a modified accumulative roll bonding process where the strips were rotated 90° around the normal direction between successive passes. Transmission electron microscopy and X-ray diffraction analyses reveal the development of nanostructures in the Al matrix after seven passes. It is found that the B4C reinforcement distribution in the matrix is improved by progression of the process. Additionally, the tensile yield strength and elongation of the processed materials are increased with the increase of passes. 展开更多
关键词 metallic matrix composites particle reinforced composites NANOSTRUCTURES ALUMINUM boron carbide roll bonding tensile properties
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部