期刊文献+
共找到741篇文章
< 1 2 38 >
每页显示 20 50 100
CVD Coating of Oxide Particles for the Production of Novel Particle-Reinforced Iron-Based Metal Matrix Composites
1
作者 Sebastian Brust Arne Röttger Werner Theisen 《Open Journal of Applied Sciences》 2016年第4期260-269,共10页
This paper focuses on surface metallization of oxide particles by means of titanium nitride (TiN) thin films for the production of highly wear-resistant metal matrix composites (MMC) on Fe-base for wear protection app... This paper focuses on surface metallization of oxide particles by means of titanium nitride (TiN) thin films for the production of highly wear-resistant metal matrix composites (MMC) on Fe-base for wear protection applications. These powder-metallurgically produced materials consist of a metallic matrix with embedded oxide hard-particles such as alumina or zirconia. The poor wettability of these oxides by iron-base melts and the resulting weak bonding between the components lead to porous materials and weak tribomechanical properties, thus limiting the material’s application range. To counteract such problems, this paper describes a processing route in which the oxide particles are pre-metallized by application of a thin TiN coating by means of chemical vapor deposition (CVD). This surface metallization should increase the wettability and bonding behavior between the ionically bonded particles and the iron-base alloy, which should improve the mechanical and tribological properties. Therefore, a CVD device for coating ceramic particles was constructed and is described in this paper. Furthermore, coatings deposited on the ceramic sub-strates were investigated by means of RBS, SEM and XRD. In addition, the feasibility of producing metal matrix composites (MMC) by admixing the TiN-coated oxide particles with a Fe-base alloy and their further densification by supersolidus liquid-phase sintering is demonstrated. 展开更多
关键词 Chemical Vapor Deposition particle coating metalLIZATION metal matrix composites Reactive Wetting
下载PDF
Effect of particle characteristics on deformation of particle reinforced metal matrix composites 被引量:6
2
作者 张鹏 李付国 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第4期655-661,共7页
The particle characteristics of 15%SiC particles reinforced metal matrix composites(MMC)made by powder metallurgy route were studied by using a statistical method.In the analysis,the approach for estimation of the cha... The particle characteristics of 15%SiC particles reinforced metal matrix composites(MMC)made by powder metallurgy route were studied by using a statistical method.In the analysis,the approach for estimation of the characteristics of particles was presented.The study was carried out by using the mathematic software MATLAB to calculate the area and perimeter of each particle, in which the image processing technique was employed.Based on the calculations,the sizes and shape factors of each particle were investigated respectively.Additionally,the finite element model(FEM)was established on the basis of the actual microstructure.The contour plots of von Mises effective stress and strain in matrix and particles were presented in calculations for considering the influence of microstructure on the deformation behavior of MMC.Moreover,the contour maps of the maximum stress of particles and the maximum plastic strain of matrix in the vicinity of particles were introduced respectively. 展开更多
关键词 metal matrix composites deformation mechanism particle characteristic finite element model
下载PDF
PARTICULATE SIZE EFFECTS IN THE PARTICLE-REINFORCED METAL-MATRIX COMPOSITES 被引量:13
3
作者 魏悦广 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第1期45-58,共14页
The influences of I,article size on the mechanical properties of the particulate metal matrix composite;are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly u... The influences of I,article size on the mechanical properties of the particulate metal matrix composite;are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly using the conventional elastic-plastic theory. It is because that no length scale parameters are involved in the conventional theory. In the present research, using the strain gradient plasticity theory, a systematic research of the particle size effect in the particulate metal matrix composite is carried out. The roles of many composite factors, such as: the particle size, the Young's modulus of the particle, the particle aspect ratio and volume fraction, as well as the plastic strain hardening exponent of the matrix material, are studied in detail. In order to obtain a general understanding for the composite behavior, two kinds of particle shapes, ellipsoid and cylinder, are considered to check the strength dependence of the smooth or non-smooth particle surface. Finally, the prediction results will be applied to the several experiments about the ceramic particle-reinforced metal-matrix composites. The material length scale parameter is predicted. 展开更多
关键词 size effect strain gradient plasticity the particle-reinforced metal-matrix composite
下载PDF
Cavitation-erosion mechanism of laser cladded SiC particle reinforced metal matrix composite 被引量:2
4
作者 张春华 张松 +3 位作者 杨洪刚 朱圣龙 文效忠 才庆魁 《中国有色金属学会会刊:英文版》 CSCD 2005年第1期35-39,共5页
With 2 kW continuous wave Nd-YAG laser, SiC ceramic powder was laser-cladded on the AA6061 aluminium alloy surface. Within the range of process parameters investigated, the parameters were optimized to produce the SiC... With 2 kW continuous wave Nd-YAG laser, SiC ceramic powder was laser-cladded on the AA6061 aluminium alloy surface. Within the range of process parameters investigated, the parameters were optimized to produce the SiC_p reinforced metal matrix composites(MMC) modified layer on AA6061 alloy surface. After being treated, the modified layer is crack-free, porosity-free, and has good metallurgical bond with the substrate. The microstructure and chemical composition of the modified layer were analyzed by such detection devices as scanning electronic microscope(SEM-EDX) and X-ray diffractometer(XRD). The performance of electrochemical corrosion and cavitation erosion and their mechanism were estimated by the microhardness tester, potentiostat and (ultrasonic-)(induced) cavitation device. 展开更多
关键词 铝合金 激光镀膜 金属模版复合物 粒子加固 气蚀酌
下载PDF
Damage analysis for particle reinforced metal matrix composite by ultrasonic method 被引量:2
5
作者 杨治国 龙士国 《中国有色金属学会会刊:英文版》 CSCD 2006年第B02期652-655,共4页
The damage characteristic of particle reinforced metal matrix composite (PMMC) was studied by ultrasonic non-destructive evaluation method. After the sample was damaged induced by tensile load, the ultrasonic wave tha... The damage characteristic of particle reinforced metal matrix composite (PMMC) was studied by ultrasonic non-destructive evaluation method. After the sample was damaged induced by tensile load, the ultrasonic wave that propagated in the sample were collected. The damage parameter was defined by ultrasonic parameter and the wave signals were analyzed by correlation method. The results show that with the increase of tensile load, the damage parameter increases and the correlation coefficient decreases. The fracture section morphologies of PMMC under tensile load were observed by SEM. It is found that there are many concaves in the metal matrix. Therefore the damage evolution can be concluded. The initial damage is induced by void nucleation, growth and subsequent coalescence in the matrix or interface separation. 展开更多
关键词 颗粒增强金属基复合材料 损伤分析 超声法 非破坏性试验
下载PDF
Strengthening mechanisms based on reinforcement distribution uniformity for particle reinforced aluminum matrix composites 被引量:13
6
作者 Gang CHEN Jia WAN +3 位作者 Ning HE Hong-ming ZHANG Fei HAN Yu-min ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第12期2395-2400,共6页
A modified mixed strengthening model was proposed for describing the yield strength of particle reinforced aluminum matrix composites.The strengthening mechanisms of the composites were analyzed based on the microstru... A modified mixed strengthening model was proposed for describing the yield strength of particle reinforced aluminum matrix composites.The strengthening mechanisms of the composites were analyzed based on the microstructures and compression mechanical properties.The distribution uniformity of reinforcements and cooperation relationship among dislocation mechanisms were considered in the modified mixed strengthening model by introducing a distribution uniformity factor u and a cooperation coefficient fc,respectively.The results show that the modified mixed strengthening model can accurately describe the yield strengths of Al3Ti/2024Al composites with a relative deviation less than1.2%,which is much more accurate than other strengthening models.The modified mixed model can also be used to predict the yield strength of Al3Ti/2024Al composites with different fractions of reinforcements. 展开更多
关键词 metal matrix composite strengthening model yield strength REINFORCEMENT distribution uniformity
下载PDF
Ballistic performance of tungsten particle/metallic glass matrix composite long rod 被引量:6
7
作者 Ji-cheng Li Xiao-wei Chen Feng-lei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第2期132-145,共14页
In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the ... In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the corresponding finite element method(FEM) simulations a modified coupled thermomechanical constitutive model is employed to describe the mechanical properties of metallic glass(MG)matrix, and geometrical models of the WP/MG composite rod are established based on its inner structure. The deformation and failure characteristics of the rod and target materials are analyzed in detail,and the influences of various factors on the ballistic performance of the WP/MG composite long rod are discussed. Related analysis demonstrates that the penetrating performance of the WP/MG rod is similar to that of the tungsten fiber/metallic glass matrix(WF/MG) composite long rod, i.e., a "self-sharpening" behavior also occurs during the penetration process, and correspondingly its penetrating capability is better than that of the tungsten heavy alloy(WHA) rod. However, the mass erosion manner of the WP/MG rod is different and the erosion is relatively severe, thus its penetrating capability is a little lower compared with that of the WF/MG one. Moreover, the impact velocity and the target strength have significant influences on the ballistic performance of the WP/MG composite rod, whereas the effect of initial nose shape is very little. 展开更多
关键词 TUNGSTEN particle/metallic glass matrix (WP/MG)composite BALLISTIC performance Shear band Self-sharpening Numerical analysis
下载PDF
Improved wettability and mechanical properties of metal coated carbon fiber-reinforced aluminum matrix composites by squeeze melt infiltration technique 被引量:11
8
作者 Jian-jun SHA Zhao-zhao LÜ +6 位作者 Ru-yi SHA Yu-fei ZU Ji-xiang DAI Yu-qiang XIAN Wei ZHANG Ding CUI Cong-lin YAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第2期317-330,共14页
In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the ... In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber. 展开更多
关键词 carbon fiber metal matrix composite Cf/Al composite coating WETTABILITY mechanical properties
下载PDF
Microstructure and wear characteristics of ATZ ceramic particle reinforced gray iron matrix surface composites 被引量:3
9
作者 Xue Ma Liang-feng Li +3 位作者 Fan Zhang Zu-hua Zhang Hao Wang En-ze Wang 《China Foundry》 SCIE 2018年第3期167-172,共6页
The alumina toughened zirconia(ATZ) ceramic particle reinforced gray iron matrix surface composite was successfully manufactured by pressureless infi ltration. The porous preform played a key role in the infi ltrating... The alumina toughened zirconia(ATZ) ceramic particle reinforced gray iron matrix surface composite was successfully manufactured by pressureless infi ltration. The porous preform played a key role in the infi ltrating progress. The microstructure was observed by scanning electron microscopy(SEM); the phase constitutions was analyzed by X-ray diffraction(XRD); and the hardness and wear resistance of selected specimens were tested by hardness testing machine and abrasion testing machine, respectively. The addition of high carbon ferrochromium powders leads to the formation of white iron during solidifi cation. The wear volume loss rates of ATZ ceramic particle reinforced gray iron matrix surface composite decreases fi rst, and then tends to be stable. The wear resistance of the composite is 2.7 times higher than that of gray iron matrix. The reason is a combination of the surface hardness increase of gray iron matrix and ATZ ceramic particles and alloy carbides protecting effect on gray iron matrix. 展开更多
关键词 metal-matrix SURFACE composites pressureless infiltrating particle-REINFORCEMENT SURFACE ALLOYING WEAR testing
下载PDF
Statistical Analyses of the Strengths of Particulate Reinforced Metal Matrix Composites(PRMMCs)Subjected to Multiple Tensile and Shear Stresses 被引量:1
10
作者 Geng Chen Shengzhen Xin +1 位作者 Lele Zhang Christoph Broeckmann 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第6期39-50,共12页
For design and application of particulate reinforced metal matrix composites(PRMMCs),it is essential to predict the material strengths and understand how do they relate to constituents and microstructural features.To ... For design and application of particulate reinforced metal matrix composites(PRMMCs),it is essential to predict the material strengths and understand how do they relate to constituents and microstructural features.To this end,a computational approach consists of the direct methods,homogenization,and statistical analyses is introduced in our previous studies.Since failure of PRMMC materials are often caused by time-varied combinations of tensile and shear stresses,the established approach is extended in the present work to take into account of these situations.In this paper,ultimate strengths and endurance limits of an exemplary PRMMC material,WC-Co,are predicted under three independently varied tensile and shear stresses.In order to cover the entire load space with least amount of weight factors,a new method for generating optimally distributed weight factors in an n dimensional space is formulated.Employing weight factors determined by this algorithm,direct method calculations were performed on many statistically equivalent representative volume elements(SERVE)samples.Through analyzing statistical characteristics associated with results the study suggests a simplified approach to estimate the material strength under superposed stresses without solving the difficult high dimensional shakedown problem. 展开更多
关键词 Direct methods(DM) Particulate reinforce metal matrix composites(PRMMCs) Random heterogeneous materials
下载PDF
An Application of the Modified Shear Lag Model to Study the Influence of Thermal Residual Stresses on the Stiffness and Yield Strength of Short Fiber Reinforced Metal Matrix Composites 被引量:1
11
作者 Zhonghao JIANG and Jianshe LIAN(Dept. of Materials Science and Engineering, Jilin University of Technology, Changchun 130025, China)Shangli DONG and Dezhuang YANG(School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第3期213-221,共9页
The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and ... The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions 展开更多
关键词 ab Figure An Application of the Modified Shear Lag Model to Study the Influence of Thermal Residual Stresses on the Stiffness and Yield Strength of Short Fiber reinforced metal matrix composites
下载PDF
Mixed rare earth metal conversion coatings on 2024 alloy and Al6061/SiC_p metal matrix composites
12
作者 于兴文 曹楚南 《中国有色金属学会会刊:英文版》 CSCD 2000年第5期580-584,共5页
The processes of mixed rare earth metal (REM) conversion coatings on 2024 alloy and Al6061/SiC p metal matrix composites (MMC) were introduced. The coatings were examined to be honeycomb like feature by scanning elect... The processes of mixed rare earth metal (REM) conversion coatings on 2024 alloy and Al6061/SiC p metal matrix composites (MMC) were introduced. The coatings were examined to be honeycomb like feature by scanning electron microscope. X ray diffraction analysis revealed that the coatings are amorphous structure. The results of X ray photoelectron spectroscopy indicated that the mixed REM conversion coatings consist predominantly of Ce and O, the contents of other rare earth elements (such as La, Pr) are relatively low, the coatings are about 2~4 μm thickness with excellent adhesion and wearability. The results of mass loss test showed that the mixed REM conversion coatings produce corrosion resistant surface of 2024 alloy and Al6061/SiC p. [ 展开更多
关键词 alloy Al6061/SiC P metal matrix composites MIXED RARE earth metal CONVERSION coatings
下载PDF
PARTICLES ANALYSIS OF Al_2O_3 PARTICLE REINFORCED ZL202 MATRIX COMPOSITES PREPARED BY IN-SITU REACTION
13
作者 X.H. Yan, S.C. Sun and Z.Y. JiangSchool of Materials Science and Engineering, Jiangsu University, Jiangsu 212013, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第6期531-537,共7页
ZL202 matrix composite reinforced by Al2O3 particles was prepared by combining in-situ reaction and casting techniques. Particles' size in the composites was from 1 to 5 microns in diameter. X-ray diffraction anal... ZL202 matrix composite reinforced by Al2O3 particles was prepared by combining in-situ reaction and casting techniques. Particles' size in the composites was from 1 to 5 microns in diameter. X-ray diffraction analysis verified that the reinforcing particleswere δ-Al2O3 which belong to γ-Al2O3 series. The wetting angle between matrix andreinforcement was less than 90°. Energy spectrum analysis indicated that the reactionin bell cover pressing process took place not so completely as in flouring stir process. When the reaction was finished, the matrix was still ZL202 alloy in both.processes. 展开更多
关键词 metal matrix composites in-situ reaction particleS
下载PDF
Study on Diffusion Welding Parameters of Particle reinforced Aluminium Matrix Composite Al_2O_(3p) /6061Al
14
作者 刘黎明 牛济泰 韩立红 《Rare Metals》 SCIE EI CAS CSCD 1999年第4期299-304,共6页
Effects of diffusion welding process parameters on strength of welded joint based on particle reinforced aluminium matrix composite Al 2O 3p /6061Al have been studied through comparing with aluminium matrix allo... Effects of diffusion welding process parameters on strength of welded joint based on particle reinforced aluminium matrix composite Al 2O 3p /6061Al have been studied through comparing with aluminium matrix alloy. The mechanism for loss of joint strength has been analyzed. It should be pointed out that key processing parameters affecting the strength of joint was welding temperature. The high quality joint can be successfully obtained with appropriate diffusion welding parameters. 展开更多
关键词 particle reinforced aluminium matrix composite Diffusion welding Oxide film
下载PDF
Ultrafine and fine particle emission in turning titanium metal matrix composite(Ti-MMC)
15
作者 Seyed Ali NIKNAM Masoud SABERI +3 位作者 Jules KOUAM Ramin HASHEMI Victor SONGMENE Marek BALAZINSKI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1563-1572,共10页
Titanium metal matrix composite(Ti-MMC)has excellent features and capabilities which can be considered a potential candidate to replace commercial titanium and superalloys within an extensive range of products and ind... Titanium metal matrix composite(Ti-MMC)has excellent features and capabilities which can be considered a potential candidate to replace commercial titanium and superalloys within an extensive range of products and industrial sectors.Regardless of the superior features in Ti-MMC,however,referring to several factors including high unit cost and existence of rigid and abrasive ceramic particles in the generated matrices of the work part,the Ti-MMC is grouped as extremely difficult to cut with a poor level of machinability.Furthermore,adequate process parameters for machining Ti-MMCs under several lubrication methods are rarely studied.Therefore,adequate knowledge of this regard is strongly demanded.Among machinability attributes,ultrafine particles(UFPs)and fine particles(FPs)have been selected as the main machinability attributes and the factors leading to minimized emission have been studied.According to experimental observations,despite the type of coating used,the use of higher levels of flow rate led to less UFPs,while no significant effects were observed on UFPs.Under similar cutting conditions,higher levels of FPs were recorded under the use of uncoated inserts.Moreover,cutting speed had no significant influence on UFPs;nevertheless,it significantly affects the FPs despite the type of insert used. 展开更多
关键词 metal matrix composites(MMCs) particle emission dust emission TURNING lubrication mode
下载PDF
Simplification and improvement of prediction model for elastic modulus of particulate reinforced metal matrix composite
16
作者 王文明 《Journal of Chongqing University》 CAS 2006年第4期187-192,共6页
In this paper, we proposed a five-zone model to predict the elastic modulus of particulate reinforced metal matrix composite. We simplified the calculation by ignoring structural parameters including particulate shape... In this paper, we proposed a five-zone model to predict the elastic modulus of particulate reinforced metal matrix composite. We simplified the calculation by ignoring structural parameters including particulate shape, arrangement pattern and dimensional variance mode which have no obvious influence on the elastic modulus of a composite, and improved the precision of the method by stressing the interaction of interfaces with pariculates and maxtrix of the composite. The five- zone model can reflect effects of interface modulus on elastic modulus of composite. It overcomes limitations of expressions of rigidity mixed law and flexibility mixed law. The original idea of five zone model is to put forward the particulate/interface interactive zone and matrix/interface interactive zone. By organically integrating the rigidity mixed law and flexibility mixed law, the model can predict the engineering elastic constant of a composite effectively. 展开更多
关键词 particulate reinforced metal matrix composite elastic modulus prediction model five-zone model
下载PDF
Microstructural Dependence of Damping Behaviour of Eutectoid Zn-Al Based Alloy (ZA27)──Discussion of "Damping Behaviour and Mechanism of Graphite Particulate Reinforced Metal Matrix Composites
17
《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第2期178-180,共3页
关键词 Zn ZA27 Graphite Al Damping Behaviour and Mechanism of Graphite Particulate reinforced metal matrix composites Microstructural Dependence of Damping Behaviour of Eutectoid Zn-Al Based Alloy Discussion of
下载PDF
Simplified prediction model for elastic modulus of particulate reinforced metal matrix composites
18
作者 王文明 潘复生 +1 位作者 鲁云 曾苏民 《中国有色金属学会会刊:英文版》 CSCD 2006年第A03期1584-1587,共4页
Some structural parameters of the metal matrix composite, including particulate shape and distribution do not influence the elastic modulus. A prediction model for the elastic modulus of particulate reinforced metal m... Some structural parameters of the metal matrix composite, including particulate shape and distribution do not influence the elastic modulus. A prediction model for the elastic modulus of particulate reinforced metal matrix Al composite was developed and improved. Expressions of rigidity and flexibility of the rule of mixing were proposed. A five-zone model for elasticity performance calculation of the composite was proposed. The five-zone model is thought to be able to reflect the effects of the MMC interface on elastic modulus of the composite. The model overcomes limitations of the currently-understood rigidity and flexibility of the rule of mixing. The original idea of a five-zone model is to propose particulate/interface interactive zone and matrix/interface interactive zone. By integrating organically with the law of mixing, the new model is found to be capable of predicting the engineering elastic constants of the MMC composite. 展开更多
关键词 弹性模数 金属化合物 金属变形 金属加工
下载PDF
Effects of particle size on residual stresses of metal matrix composites
19
作者 晏义伍 耿林 李爱滨 《中国有色金属学会会刊:英文版》 CSCD 2006年第A03期1346-1350,共5页
A finite element analysis was carned out on the development of residual stresses during the cooling process from the fabrication temperature in the SiCp reinforced Al matrix composites. In the simulation, the two-dime... A finite element analysis was carned out on the development of residual stresses during the cooling process from the fabrication temperature in the SiCp reinforced Al matrix composites. In the simulation, the two-dimensional and random distribution multi-particle unit cell model and plane strain conditions were used. By incorporating the Taylor-based nonlocal plasticity theory, the effect of particle size on the nature, magnitude and distribution of residual stresses of the composites was studied. The magnitude thermal-stress-induced plastic deformation during cooling was also calculated. The results show similarities in the patterns of thermal residual stress and strain distributions for all ranges of particle size. However, they show differences in magnitude of thermal residual stress as a result of strain gradient effect. The average thermal residual stress increases with decreasing particle size, and the residual plastic strain decreases with decreasing particle size. 展开更多
关键词 金属复合物 应力分析 颗粒 有限元分析 金相
下载PDF
The Effect of Particle Alignment on the Tensile Behaviors of Extruded Al2O3/2124 Aluminum Alloy Metal Matrix Composites
20
作者 Mohamed Mahmoud Emara 《材料科学与工程(中英文A版)》 2014年第1期34-38,共5页
关键词 金属基复合材料 拉伸行为 挤压 对准 铝合金 粒子 机械性能 微观结构
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部