Optical nanoparticles are nowadays one of the key elements of photonics.They do not only allow optical imaging of a plethora of systems(from cells to microelectronics),but,in many cases,they also behave as highly sens...Optical nanoparticles are nowadays one of the key elements of photonics.They do not only allow optical imaging of a plethora of systems(from cells to microelectronics),but,in many cases,they also behave as highly sensitive remote sensors.In recent years,it has been demonstrated the success of optical tweezers in isolating and manipulating individual optical nanoparticles.This has opened the door to high resolution single particle scanning and sensing.In this quickly growing field,it is now necessary to sum up what has been achieved so far to identify the appropriate system and experimental set-up required for each application.In this review article we summarize the most relevant results in the field of optical trapping of individual optical nanoparticles.After systematic bibliographic research,we identify the main families of optical nanoparticles in which optical trapping has been demonstrated.For each case,the main advances and applications have been described.Finally,we also include our critical opinion about the future of the field,identifying the challenges that we are facing.展开更多
In this paper, we present the results of the evaluation of three low-cost laser sensor</span><span style="font-family:Verdana;">s</span><span style="font-family:""><...In this paper, we present the results of the evaluation of three low-cost laser sensor</span><span style="font-family:Verdana;">s</span><span style="font-family:""><span style="font-family:Verdana;"> and comparison with the standard device Metone Aerocet 531s which is capable of counting dust particles as small as 0.3 μm. The sensors used in this study are PMS5003 (Plantower), SPS30 (Sesirion), SM-UART-04L (Amphenol). During the measurement, the overall trend of the outputs from the sensors was similar to that of the Aerocet 531s. The PMS5003 sensor has a relatively small standard error in the all particle measurement ranges (<15 μg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> in the low particle concentration range). All sensors have a high linearity compared to data from standard equipment, PMS5003: PM1.0 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.89;PM2.5 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.95;PM10 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.87;SPS30 PM2.5 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.95 and PM10 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.99;SM-UART-04L PM1.0 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.98. Three main sensor calibration methods (single-point calibration, two-point calibration and multi-point curve correction) with implementation steps for each method as well as their practical applications in calibrating low-cost air quality sensors according to standard measuring equipment are also detailed illustrated.展开更多
Based on three-dimensional (3D) acceleration sensing, an intelligent particle spy capable of detecting, transferring, and storing data, is proposed under the name of Particle Measurement Sensor (PMS). A prototype ...Based on three-dimensional (3D) acceleration sensing, an intelligent particle spy capable of detecting, transferring, and storing data, is proposed under the name of Particle Measurement Sensor (PMS). A prototype 60-mm-dia PMS was tested to track its freefall in terms of velocity and displacement, and served as a particle spy in a fluidized bed delivering the in situ acceleration information it detects. With increasing superficial gas velocity in the fluidized bed, the acceleration felt by PMS was observed to increase. The variance of the signals, which reflect the fluctuation, increased at first, reaching a maximum at the gas velocity (Uc) which marks the transition from bubbling to turbulent fluidization. Through probability density distribution (PDD) analysis, the PDD peak can be divided into the emulsion phase peak and the bubble phase peak. The average acceleration of emulsion and bubble phase increased, while the variance of both phases reached a maximum at Uc, at the same time. However, the difference between the variances of two phases reached the maximum at Uc. Findings of this study indicate that PMS can record independent in situ information. Further, it can provide other in situ measurements when equipped with additional multi-functional sensors.展开更多
Vigorous particle collisions and mechanical processes occurring during high-velocity pneumatic con- veying often lead to particle degradation. The resulting particle size reduction and particle number increase will im...Vigorous particle collisions and mechanical processes occurring during high-velocity pneumatic con- veying often lead to particle degradation. The resulting particle size reduction and particle number increase will impact on the flow characteristics, and subsequently affect the electrostatic type of flow measurements. This study investigates this phenomenon using both experimental and numerical meth- ods. Particle degradation was induced experimentally by recursively conveying the fillite material within a pneumatic pipeline. The associated particle size reduction was monitored. Three electrostatic sensors were embedded along the pipeline to monitor the flow. The results indicated a decreasing trend in the electrostatic sensor outputs with decreasing particle size, which suggested the attenuation of the flow velocity fluctuation. This trend was more apparent at higher conveying velocities, which suggested that more severe particle degradation occurred under these conditions. Coupled computational fluid dynamics and discrete element methods (CFD-DEM) analysis was used to qualitatively validate these experimental results. The numerical results suggested that smaller particles exhibited lower flow velocity fluctua- tions, which was consistent with the observed experimental results. These findings provide important information for the accurate aoolication of electrostatic measurement devices in oneumatic conveyors.展开更多
The combined inclined rib pair(CIRP)is the first time proposed to improve the sensor performance of particle velocity sensor(PVS)by using a three-dimensional numerical method.The method is verified by the experiment r...The combined inclined rib pair(CIRP)is the first time proposed to improve the sensor performance of particle velocity sensor(PVS)by using a three-dimensional numerical method.The method is verified by the experiment results in the literature.The optimal plain channel parameters are determined as the basic sensor structure.In comparison of plain channel,both heat transfer characteristics and sensor performance are enhanced effectively by arranging the CIRP.The reason is that the high flow rate region caused by the CIRP can maintain strongly in the whole fluid field if there are enough rib pairs.Furthermore,the produced longitudinal vortex pair can get a better fluid mix,which is more conductive to heat transfer.The increasing height and number of the CIRP can improve the heat transfer characteristics,but the flow resistance will increase as well.For the purpose of finding the best overall performance,the effects of the parameters including the geometric sizes and the position of the CIRP have been investigated.The results show that PVS will get the best sensitivity when the rib length and width are 0.2 mm and 0.03 mm respectively,and the distance between rib pair and between ribs in the same pair are 0.15 mm and 0.3 mm respectively.Besides,the most suitable crossing angle is 45°.Thus,the performance of PVS can be significantly improved by this novel structure.展开更多
The purpose of this study is two-fold: firstly, the development of a cheap, easy-to-construct and effective nanoparticle generator for testing nanoparticle sensors; secondly, the use of such a generator to test the e...The purpose of this study is two-fold: firstly, the development of a cheap, easy-to-construct and effective nanoparticle generator for testing nanoparticle sensors; secondly, the use of such a generator to test the effectiveness of a sensor device in trapping aerosolised nanoparticles. In this study, we have constructed an effective aerosol generator platform, based on aerosol-assisted chemical vapour deposition technology. Under well-controlled experimental conditions, this platform is capable of depositing aerosolised sodium chloride particles homogeneously on a substrate very effectively. Deposited aerosol droplets were subsequently dried and shown to form nanosized cubic crystals that are free from impurities. This platform was employed to test the effectiveness of a MEMS comb device in the electrostatic trapping of nanoparticles. Upon applying a DC bias (0.5 V) to the MEMS device, results showed an increase in nanoparticle deposition on the surface of the device, due to electrostatic precipitation. The presence of an electric field was shown to affect crystal formation upon drying of the aerosol droplets on the substrate; this caused a blotchy appearance on the SEM image, which was not observed in the absence of electric field.展开更多
Due to the excellent drainage performance of the ballast,existing studies mainly focus on the dynamic response of ballast under field capacity or saturation.Attention has rarely been paid to dynamic changes in moistur...Due to the excellent drainage performance of the ballast,existing studies mainly focus on the dynamic response of ballast under field capacity or saturation.Attention has rarely been paid to dynamic changes in moisture content and potential influences.In this article,we firstly conduct a model test to determine the variation of ballast moisture content under artificial rainfall.After that,a full-scale model test with cyclic loading is carried out to study the effect of moisture content variation on the macro-microscopic response of the ballast bed,where several wireless particle sensors are installed to obtain ballast motion characteristics at strategic locations.The results show that the moisture content increases gradually and stabilizes at a flat peak under rainfall,despite the excellent drainage performance of ballast bed.After halting rainfall,the moisture content drops back to field capacity,which indicates dynamic flowing surface water on ballast particles under rainfall.Such flowing surface water brings changes to the original dynamic equilibrium of ballast bed:macroscopically,the deformation rate of stabilized ballast bed increases significantly,reaching a local peak under field capacity;microscopically,the x-and z-angular accelerations of the ballast show positive correlation with rainfall intensity.The multiscale responses indicate that field capacity is a critical moisture content.展开更多
Indoor airborne bioaerosols of outdoor origin play an important role in determining the exposure of humans to bioaerosols because people spend most of their time indoors. However, there are few studies focusing on ind...Indoor airborne bioaerosols of outdoor origin play an important role in determining the exposure of humans to bioaerosols because people spend most of their time indoors. However, there are few studies focusing on indoor bioaerosols originating from outdoors. In this study, indoor versus outdoor size-resolved concentrations and particle asymmetry factors of airborne fluorescent bioaerosols in an office room were measured continuously for 6 days (144 h) using a fluorescent bioaerosol detector. The windows and door of this room were closed to ensure that there was only air infiltration; moreover, any human activities were ceased during sampling to inhibit effects of indoor sources. We focused on fine particles, since few coarse particles enter indoor environments, when windows and doors are closed. Both indoor and outdoor fluorescent bioaerosol size distributions were fit with two-mode lognormal distributions (indoor R2 = 0.935, outdoor R2 = 0.938). Asymmetry factor distributions were also fit with lognormal distributions (indoor R2 = 0.992, outdoor R2 = 0.992). Correlations between indoor and outdoor fluorescent bioaerosol concentrations show significant concentration-attenuation and a time lag during the study period. A two-parameter, semi-empirical model was used to predict concentrations of indoor fluorescent bioaerosols of outdoor origin. The measured and predicted concentrations had a linear relationship for the studied size fractions, with an R2 for all size fractions of larger than 0.83.展开更多
基金supported by projects PID2019-106211RB-I00,PID2019-105195RA-I00,and PID2021-123228NB-I00funded by MCIN/AEI/10.13039/501100011033 and projects CNS2022-135495,and TED2021-129937B-I00 funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGeneration EU/PRTR.P.Camarero thanks Comunidad de Madrid for Programa Investigo by Plan de Recuperación,Transformación y Resiliencia-Comunidad de Madrid-Ministerio de Trabajo y Economía Social de España-Unión Europea-NextGenerationEU.F.Zhang acknowledges the scholarship from the China Scholarship Council (202108440235)supported by Comunidad de Madrid (S2022/BMD-7403 RENIM-CM and REACT-UCM projects).
文摘Optical nanoparticles are nowadays one of the key elements of photonics.They do not only allow optical imaging of a plethora of systems(from cells to microelectronics),but,in many cases,they also behave as highly sensitive remote sensors.In recent years,it has been demonstrated the success of optical tweezers in isolating and manipulating individual optical nanoparticles.This has opened the door to high resolution single particle scanning and sensing.In this quickly growing field,it is now necessary to sum up what has been achieved so far to identify the appropriate system and experimental set-up required for each application.In this review article we summarize the most relevant results in the field of optical trapping of individual optical nanoparticles.After systematic bibliographic research,we identify the main families of optical nanoparticles in which optical trapping has been demonstrated.For each case,the main advances and applications have been described.Finally,we also include our critical opinion about the future of the field,identifying the challenges that we are facing.
文摘In this paper, we present the results of the evaluation of three low-cost laser sensor</span><span style="font-family:Verdana;">s</span><span style="font-family:""><span style="font-family:Verdana;"> and comparison with the standard device Metone Aerocet 531s which is capable of counting dust particles as small as 0.3 μm. The sensors used in this study are PMS5003 (Plantower), SPS30 (Sesirion), SM-UART-04L (Amphenol). During the measurement, the overall trend of the outputs from the sensors was similar to that of the Aerocet 531s. The PMS5003 sensor has a relatively small standard error in the all particle measurement ranges (<15 μg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> in the low particle concentration range). All sensors have a high linearity compared to data from standard equipment, PMS5003: PM1.0 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.89;PM2.5 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.95;PM10 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.87;SPS30 PM2.5 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.95 and PM10 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.99;SM-UART-04L PM1.0 R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.98. Three main sensor calibration methods (single-point calibration, two-point calibration and multi-point curve correction) with implementation steps for each method as well as their practical applications in calibrating low-cost air quality sensors according to standard measuring equipment are also detailed illustrated.
基金supported by the Foundation for Natural Scientific Foundation of China (No. 20606020, No. 20736004, No. 20736007)
文摘Based on three-dimensional (3D) acceleration sensing, an intelligent particle spy capable of detecting, transferring, and storing data, is proposed under the name of Particle Measurement Sensor (PMS). A prototype 60-mm-dia PMS was tested to track its freefall in terms of velocity and displacement, and served as a particle spy in a fluidized bed delivering the in situ acceleration information it detects. With increasing superficial gas velocity in the fluidized bed, the acceleration felt by PMS was observed to increase. The variance of the signals, which reflect the fluctuation, increased at first, reaching a maximum at the gas velocity (Uc) which marks the transition from bubbling to turbulent fluidization. Through probability density distribution (PDD) analysis, the PDD peak can be divided into the emulsion phase peak and the bubble phase peak. The average acceleration of emulsion and bubble phase increased, while the variance of both phases reached a maximum at Uc, at the same time. However, the difference between the variances of two phases reached the maximum at Uc. Findings of this study indicate that PMS can record independent in situ information. Further, it can provide other in situ measurements when equipped with additional multi-functional sensors.
文摘Vigorous particle collisions and mechanical processes occurring during high-velocity pneumatic con- veying often lead to particle degradation. The resulting particle size reduction and particle number increase will impact on the flow characteristics, and subsequently affect the electrostatic type of flow measurements. This study investigates this phenomenon using both experimental and numerical meth- ods. Particle degradation was induced experimentally by recursively conveying the fillite material within a pneumatic pipeline. The associated particle size reduction was monitored. Three electrostatic sensors were embedded along the pipeline to monitor the flow. The results indicated a decreasing trend in the electrostatic sensor outputs with decreasing particle size, which suggested the attenuation of the flow velocity fluctuation. This trend was more apparent at higher conveying velocities, which suggested that more severe particle degradation occurred under these conditions. Coupled computational fluid dynamics and discrete element methods (CFD-DEM) analysis was used to qualitatively validate these experimental results. The numerical results suggested that smaller particles exhibited lower flow velocity fluctua- tions, which was consistent with the observed experimental results. These findings provide important information for the accurate aoolication of electrostatic measurement devices in oneumatic conveyors.
基金financially supported by the ScientificResearch and Development Program of City of Xiamen(3502Z20143003)the University-Industry Collaboration Program of Fujian Province,China(2015H6021)。
文摘The combined inclined rib pair(CIRP)is the first time proposed to improve the sensor performance of particle velocity sensor(PVS)by using a three-dimensional numerical method.The method is verified by the experiment results in the literature.The optimal plain channel parameters are determined as the basic sensor structure.In comparison of plain channel,both heat transfer characteristics and sensor performance are enhanced effectively by arranging the CIRP.The reason is that the high flow rate region caused by the CIRP can maintain strongly in the whole fluid field if there are enough rib pairs.Furthermore,the produced longitudinal vortex pair can get a better fluid mix,which is more conductive to heat transfer.The increasing height and number of the CIRP can improve the heat transfer characteristics,but the flow resistance will increase as well.For the purpose of finding the best overall performance,the effects of the parameters including the geometric sizes and the position of the CIRP have been investigated.The results show that PVS will get the best sensitivity when the rib length and width are 0.2 mm and 0.03 mm respectively,and the distance between rib pair and between ribs in the same pair are 0.15 mm and 0.3 mm respectively.Besides,the most suitable crossing angle is 45°.Thus,the performance of PVS can be significantly improved by this novel structure.
文摘The purpose of this study is two-fold: firstly, the development of a cheap, easy-to-construct and effective nanoparticle generator for testing nanoparticle sensors; secondly, the use of such a generator to test the effectiveness of a sensor device in trapping aerosolised nanoparticles. In this study, we have constructed an effective aerosol generator platform, based on aerosol-assisted chemical vapour deposition technology. Under well-controlled experimental conditions, this platform is capable of depositing aerosolised sodium chloride particles homogeneously on a substrate very effectively. Deposited aerosol droplets were subsequently dried and shown to form nanosized cubic crystals that are free from impurities. This platform was employed to test the effectiveness of a MEMS comb device in the electrostatic trapping of nanoparticles. Upon applying a DC bias (0.5 V) to the MEMS device, results showed an increase in nanoparticle deposition on the surface of the device, due to electrostatic precipitation. The presence of an electric field was shown to affect crystal formation upon drying of the aerosol droplets on the substrate; this caused a blotchy appearance on the SEM image, which was not observed in the absence of electric field.
基金The Natural Science Foundation of Shanghai(grant No.21ZR1465400)is greatly appreciated for providing financial support to this research.
文摘Due to the excellent drainage performance of the ballast,existing studies mainly focus on the dynamic response of ballast under field capacity or saturation.Attention has rarely been paid to dynamic changes in moisture content and potential influences.In this article,we firstly conduct a model test to determine the variation of ballast moisture content under artificial rainfall.After that,a full-scale model test with cyclic loading is carried out to study the effect of moisture content variation on the macro-microscopic response of the ballast bed,where several wireless particle sensors are installed to obtain ballast motion characteristics at strategic locations.The results show that the moisture content increases gradually and stabilizes at a flat peak under rainfall,despite the excellent drainage performance of ballast bed.After halting rainfall,the moisture content drops back to field capacity,which indicates dynamic flowing surface water on ballast particles under rainfall.Such flowing surface water brings changes to the original dynamic equilibrium of ballast bed:macroscopically,the deformation rate of stabilized ballast bed increases significantly,reaching a local peak under field capacity;microscopically,the x-and z-angular accelerations of the ballast show positive correlation with rainfall intensity.The multiscale responses indicate that field capacity is a critical moisture content.
基金This work was supported by the National Key Research and Development Plan from the Ministry of Science and Technology of China through Grant No. 2016YFC0700500, as well as funding from Innovative Research Groups of the National Natural Science Foundation of China (No. 51521005), and the National Natural Science Foundation of China (No. 51678328 & 21221004 & 41227805 & 21190054).
文摘Indoor airborne bioaerosols of outdoor origin play an important role in determining the exposure of humans to bioaerosols because people spend most of their time indoors. However, there are few studies focusing on indoor bioaerosols originating from outdoors. In this study, indoor versus outdoor size-resolved concentrations and particle asymmetry factors of airborne fluorescent bioaerosols in an office room were measured continuously for 6 days (144 h) using a fluorescent bioaerosol detector. The windows and door of this room were closed to ensure that there was only air infiltration; moreover, any human activities were ceased during sampling to inhibit effects of indoor sources. We focused on fine particles, since few coarse particles enter indoor environments, when windows and doors are closed. Both indoor and outdoor fluorescent bioaerosol size distributions were fit with two-mode lognormal distributions (indoor R2 = 0.935, outdoor R2 = 0.938). Asymmetry factor distributions were also fit with lognormal distributions (indoor R2 = 0.992, outdoor R2 = 0.992). Correlations between indoor and outdoor fluorescent bioaerosol concentrations show significant concentration-attenuation and a time lag during the study period. A two-parameter, semi-empirical model was used to predict concentrations of indoor fluorescent bioaerosols of outdoor origin. The measured and predicted concentrations had a linear relationship for the studied size fractions, with an R2 for all size fractions of larger than 0.83.