Hole cleaning is a complex process as there are many variables affecting cuttings removal(e.g.drilling fluid type,density,flow rate and rheological properties,cuttings size,drill pipe rotation speed).With the increasi...Hole cleaning is a complex process as there are many variables affecting cuttings removal(e.g.drilling fluid type,density,flow rate and rheological properties,cuttings size,drill pipe rotation speed).With the increasing number of drilling small diameter wells(e.g.coiled tubing drilling applications,ultra-deep wells drilled for exploitations of unconventional oil and gas resources),the wall resistance of the micro annulus also emerges as one of the most critical factors affecting the cuttings accumulation in wellbore.The eccentricity of drill pipes commonly observed during the drilling process of ultra-deep well and coiled tubing well makes the wall resistance effect on the cuttings transport even more prominent.Understanding the wall resistance effect on the particle settling behavior in eccentric annuli is,therefore,crucial for hydraulic design of efficient cuttings transport operations in these wells.In this study,a total of 196 sets of particle settling experiments were carried out to investigate the particle settling behavior in eccentric annuli filled with power-law fluids.The test matrix included the eccentricity ranges of 0-0.80,the dimensionless diameter ranges of 0.13-0.75 and the particle Reynolds number ranges of 0.09-32.34.A high-speed camera was used to record the particle settling process and determine the influences of the eccentricity,the dimensionless diameter,the fluid rheological properties,and the solid particle characteristics on the wall factor and the particle settling velocity.The functional relationship among the dimensionless diameter,the particle Reynolds number,and the wall factor was determined by using the method of controlling variables.An eccentric annulus wall factor model with average relative error of 5.16%was established.Moreover,by introducing Archimedes number,an explicit model of particle settling velocity in the eccentric annulus with average relative error of 10.17%was established.A sample calculation of particle settling velocity was provided to show the application of the explicit model.Results of this study can be used as a guideline by field engineers to improve hydraulic design of cuttings transport operations in concentric and eccentric annuli.展开更多
Rapid dewatering and thickening of whole-tailings with ultrafine particles is one of the most important processes for the whole-tailings paste preparation. Deep-cone thickener, a kind of such process for the flocculat...Rapid dewatering and thickening of whole-tailings with ultrafine particles is one of the most important processes for the whole-tailings paste preparation. Deep-cone thickener, a kind of such process for the flocculation and settling of whole-tailings, is particularly necessary to study. However, there exist many problems in observing the flocculation and settling process of whole-tailings, as well as the particle size distribution(PSD) of whole-tailings floccules in deep-cone thickener. Population balance model(PBM) is applied to predict the PSD in deep-cone thickener, and LUO model and GHADIRI model are employed to study the aggregation and fragmentation mechanism of the whole-tailings particles, respectively. Through three-dimensional numerical simulation on the whole-tailings flocculation and settling in deep-cone thickener using computational fluid dynamics(CFD)-PBM, the distribution of density and turbulent kinetic energy in deep-cone thickener were obtained, at the same time the spatio-temporal changes of whole-tailings floccules particle size distribution are analyzed. Finally, the major flocculation position in deep-cone thickener is found and the flocculation settling rules of whole-tailings are achieved.展开更多
Fluid-particle interaction underpins important behavior of granular media. Particle-scale simulation may help to provide key microscopic information governing the interaction and offer better understanding of granular...Fluid-particle interaction underpins important behavior of granular media. Particle-scale simulation may help to provide key microscopic information governing the interaction and offer better understanding of granular media as a whole. This paper presents a coupled computational fluid dynamics and discrete element method (CFD-DEM) approach for this purpose. The granular particle system is modeled by DEM, while the fluid flow is simulated by solving the locally averaged Navier-Stokes equation with CFD. The coupling is considered by exchanging such interaction forces as drag force and buoyancy force between the DEM and CFD. The approach is benchmarked by two classic geomechanics problems for which analytical solutions are available, and is further applied to the prediction of sand heap formation in water through hopper flow. It is demonstrated that the key characteristic of granular materials interacting with pore water can be successfully captured by the proposed method.展开更多
In order to study the settling mechanism of particles in an air-solid magnetically stabilized fluidized bed(MSFB) for separation,we carried out free settling and quasi-zero settling tests on the tracing particles.The ...In order to study the settling mechanism of particles in an air-solid magnetically stabilized fluidized bed(MSFB) for separation,we carried out free settling and quasi-zero settling tests on the tracing particles.The results show that the main resistance forces as the tracing particles settled in an air-solid MSFB were motion resistance force and yield force.The motion resistance and yield forces greatly hindered the free settling of the particles by greatly decreasing the acceleration for settling process of the particles.The acceleration decreased from 3022.62 cm/s 2 to zero in 0.1 s,and in the end,the particles stopped in the air-solid MSFB.The yield force on particles increased with increasing the magnetic field intensity,resulting in decrease of the quasi-zero settling displacement.However,the yield force on particles decreased with increasing the fluidized air velocity,leading to increase of the quasi-zero settling displacement.When the structure and operating parameters of the air-solid MSFB were set up,the yield stress on particles stopped in an air-solid MSFB was a function of diameter and density of particles.The settling displacements of equal diameter particles increased with increasing their densities,and the settling displacements of equal density particles increased with increasing their diameters.展开更多
The settling of particles in fluid flows is a common occurrence in various industrial processes. Investigating the interactions between particles and fluid during settling holds significant importance. This article pr...The settling of particles in fluid flows is a common occurrence in various industrial processes. Investigating the interactions between particles and fluid during settling holds significant importance. This article presents a numerical study of the settling process involving two parallel particles in upward flow, employing the immersed boundary method (IBM). The simulation data were validated using experimental results for single spherical particle settlement, two parallel spherical particles settlement, and the settlement of two series of spherical particles. A comparative analysis was conducted between particle settling in upward flow and static fluid. The study explores the impact of different upward velocities and initial particle spacing on particle settling. Results indicate that the wake generated by the two parallel particles in upward flow forms a distinct boundary with the surrounding fluid. As the upward velocity increases, this boundary becomes increasingly observable. In comparison to settling in static flow, the repulsive effect between two parallel particles in upward flow is stronger, and the settling velocity of particles is smaller. Furthermore, the study reveals that the repulsion between two particles diminishes rapidly with an increase in the initial spacing, but the final settling velocity of particles remains nearly constant.展开更多
The relatively poor settling characteristics of particles produced in moving bed biofilm reactor(MBBR)outline the importance of developing a fundamental understanding of the characterization and settleability of MBBR-...The relatively poor settling characteristics of particles produced in moving bed biofilm reactor(MBBR)outline the importance of developing a fundamental understanding of the characterization and settleability of MBBR-produced solids.The influence of carrier geometric properties and different levels of biofilm thickness on biofilm characteristics,solids production,particle size distribution(PSD),and particle settling velocity distribution(PSVD)is evaluated in this study.The analytical Vi CAs method is applied to the MBBR effluent to assess the distribution of particle settling velocities.This method is combined with microscopy imaging to relate particle size distribution to settling velocity.Three conventionally loaded MBBR systems are studied at a similar loading rate of 6.0 g/(m^(2)·day)and with different carrier types.The AnoxK^(TM)K5 carrier,a commonly used carrier,is compared to so-called thickness-restraint carriers,AnoxK^(TM)Z-carriers that are newly designed carriers to limit the biofilm thickness.Moreover,two levels of biofilm thickness,200μm and 400μm,are studied using AnoxK^(TM)Z-200 and Z-400 carriers.Statistical analysis confirms that K5 carriers demonstrated a significantly different biofilm mass,thickness,and density,in addition to distinct trends in PSD and PSVD in comparison with Z-carriers.However,in comparison of thickness-restraint carriers,Z-200 carrier results did not vary significantly compared to the Z-400 carrier.The K5 carriers showed the lowest production of suspended solids(0.7±0.3 gTSS/day),thickest biofilm(281.1±8.7μm)and lowest biofilm density(65.0±1.5 kg/m^(3)).The K5 effluent solids also showed enhanced settling behaviour,consisting of larger particles with faster settling velocities.展开更多
Dilute suspension of particles with same density and size develops clusters when settle at high Reynolds number(≥250).It is due to particles entrapment in the wakes produced by upstream particles.In this work,this ph...Dilute suspension of particles with same density and size develops clusters when settle at high Reynolds number(≥250).It is due to particles entrapment in the wakes produced by upstream particles.In this work,this phenomenon is studied for suspension having particles with different densities by numerical simulations.The particle-fluid interactions are modelled using immersed boundary method and inter-particle collisions are modelled using discrete element method.In simulations,settling Reynolds number is always kept above 250 and the suspension solid volume fraction is nearly 0.1 percent.Two particle density ratios(i.e.density of heavy particles to lighter particles)equal to 4:1 and 2:1 and particles with same density are studied.For each density ratio,the percentage volume fraction of each particle density is nearly varied from 0.8 to 0.2.Settling characteristics such as microstructures of settling particle,average settling velocity and velocity fluctuations of settling particles are studied.Simulations show that for different density particles settling characteristics of suspension is largely dominated by heavy particles.At the end of paper,the underlying physics is explained for the anomalies observed in simulation.展开更多
The drag on non-spherical particles is an important basic parameter for multi-phase flows such as in biomass combustion, chemical blending, and mineral processing. Though there is much experimental research on such pa...The drag on non-spherical particles is an important basic parameter for multi-phase flows such as in biomass combustion, chemical blending, and mineral processing. Though there is much experimental research on such particles, there are few results for cuboids. This paper presents data for cuboids with a square base in static glycerin-water solutions of various volume concentrations. Complex motions were observed and characterized. A dimensionless expression is given for terminal velocity ut as a function of Archimedes number Ar which is used to develop an accurate correlation for friction factor CD. The accuracy of the correlation is 7.9% compared to experimental data in the literature. For both square plates and square rods, the terminal velocity per unit mass, ut/mp, was used to characterize the influence of narticle geometry on velocity, which was shown to be linear.展开更多
基金the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03)China Scholarship Council(201906440166)for their financial supportfinancial support provided by the Natural Sciences and Engineering Research Council of Canada(NSERC RGPIN-2016-04647 KURU)。
文摘Hole cleaning is a complex process as there are many variables affecting cuttings removal(e.g.drilling fluid type,density,flow rate and rheological properties,cuttings size,drill pipe rotation speed).With the increasing number of drilling small diameter wells(e.g.coiled tubing drilling applications,ultra-deep wells drilled for exploitations of unconventional oil and gas resources),the wall resistance of the micro annulus also emerges as one of the most critical factors affecting the cuttings accumulation in wellbore.The eccentricity of drill pipes commonly observed during the drilling process of ultra-deep well and coiled tubing well makes the wall resistance effect on the cuttings transport even more prominent.Understanding the wall resistance effect on the particle settling behavior in eccentric annuli is,therefore,crucial for hydraulic design of efficient cuttings transport operations in these wells.In this study,a total of 196 sets of particle settling experiments were carried out to investigate the particle settling behavior in eccentric annuli filled with power-law fluids.The test matrix included the eccentricity ranges of 0-0.80,the dimensionless diameter ranges of 0.13-0.75 and the particle Reynolds number ranges of 0.09-32.34.A high-speed camera was used to record the particle settling process and determine the influences of the eccentricity,the dimensionless diameter,the fluid rheological properties,and the solid particle characteristics on the wall factor and the particle settling velocity.The functional relationship among the dimensionless diameter,the particle Reynolds number,and the wall factor was determined by using the method of controlling variables.An eccentric annulus wall factor model with average relative error of 5.16%was established.Moreover,by introducing Archimedes number,an explicit model of particle settling velocity in the eccentric annulus with average relative error of 10.17%was established.A sample calculation of particle settling velocity was provided to show the application of the explicit model.Results of this study can be used as a guideline by field engineers to improve hydraulic design of cuttings transport operations in concentric and eccentric annuli.
基金Project(51174032)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0225)supported by the Program for New Century Excellent Talents in University,ChinaProject(FRF-TP-09-001A)supported by the Fundamental Research Funds for the Central Universities,China
文摘Rapid dewatering and thickening of whole-tailings with ultrafine particles is one of the most important processes for the whole-tailings paste preparation. Deep-cone thickener, a kind of such process for the flocculation and settling of whole-tailings, is particularly necessary to study. However, there exist many problems in observing the flocculation and settling process of whole-tailings, as well as the particle size distribution(PSD) of whole-tailings floccules in deep-cone thickener. Population balance model(PBM) is applied to predict the PSD in deep-cone thickener, and LUO model and GHADIRI model are employed to study the aggregation and fragmentation mechanism of the whole-tailings particles, respectively. Through three-dimensional numerical simulation on the whole-tailings flocculation and settling in deep-cone thickener using computational fluid dynamics(CFD)-PBM, the distribution of density and turbulent kinetic energy in deep-cone thickener were obtained, at the same time the spatio-temporal changes of whole-tailings floccules particle size distribution are analyzed. Finally, the major flocculation position in deep-cone thickener is found and the flocculation settling rules of whole-tailings are achieved.
基金supported by the Research Grants Council of Hong Kong (622910)
文摘Fluid-particle interaction underpins important behavior of granular media. Particle-scale simulation may help to provide key microscopic information governing the interaction and offer better understanding of granular media as a whole. This paper presents a coupled computational fluid dynamics and discrete element method (CFD-DEM) approach for this purpose. The granular particle system is modeled by DEM, while the fluid flow is simulated by solving the locally averaged Navier-Stokes equation with CFD. The coupling is considered by exchanging such interaction forces as drag force and buoyancy force between the DEM and CFD. The approach is benchmarked by two classic geomechanics problems for which analytical solutions are available, and is further applied to the prediction of sand heap formation in water through hopper flow. It is demonstrated that the key characteristic of granular materials interacting with pore water can be successfully captured by the proposed method.
基金supported by the National Natural Science Foundation of China (Nos. 51134022 and 51174203)the Key Project of Chinese National Programs for Fundamental Research and Development (No. 2012CB214904)+2 种基金the National Natural Science Foundation of China for Innovative Research Group (No. 50921002)the Natural Science Foundation of Jiangsu Province (No. BK2010002)the Fundamental Research Funds for the Central Universities (Nos. 2010QNB11 and 2010ZDP01A06)
文摘In order to study the settling mechanism of particles in an air-solid magnetically stabilized fluidized bed(MSFB) for separation,we carried out free settling and quasi-zero settling tests on the tracing particles.The results show that the main resistance forces as the tracing particles settled in an air-solid MSFB were motion resistance force and yield force.The motion resistance and yield forces greatly hindered the free settling of the particles by greatly decreasing the acceleration for settling process of the particles.The acceleration decreased from 3022.62 cm/s 2 to zero in 0.1 s,and in the end,the particles stopped in the air-solid MSFB.The yield force on particles increased with increasing the magnetic field intensity,resulting in decrease of the quasi-zero settling displacement.However,the yield force on particles decreased with increasing the fluidized air velocity,leading to increase of the quasi-zero settling displacement.When the structure and operating parameters of the air-solid MSFB were set up,the yield stress on particles stopped in an air-solid MSFB was a function of diameter and density of particles.The settling displacements of equal diameter particles increased with increasing their densities,and the settling displacements of equal density particles increased with increasing their diameters.
基金supported by the National Natural Science Foundation of China(grant No.52222601).
文摘The settling of particles in fluid flows is a common occurrence in various industrial processes. Investigating the interactions between particles and fluid during settling holds significant importance. This article presents a numerical study of the settling process involving two parallel particles in upward flow, employing the immersed boundary method (IBM). The simulation data were validated using experimental results for single spherical particle settlement, two parallel spherical particles settlement, and the settlement of two series of spherical particles. A comparative analysis was conducted between particle settling in upward flow and static fluid. The study explores the impact of different upward velocities and initial particle spacing on particle settling. Results indicate that the wake generated by the two parallel particles in upward flow forms a distinct boundary with the surrounding fluid. As the upward velocity increases, this boundary becomes increasingly observable. In comparison to settling in static flow, the repulsive effect between two parallel particles in upward flow is stronger, and the settling velocity of particles is smaller. Furthermore, the study reveals that the repulsion between two particles diminishes rapidly with an increase in the initial spacing, but the final settling velocity of particles remains nearly constant.
文摘The relatively poor settling characteristics of particles produced in moving bed biofilm reactor(MBBR)outline the importance of developing a fundamental understanding of the characterization and settleability of MBBR-produced solids.The influence of carrier geometric properties and different levels of biofilm thickness on biofilm characteristics,solids production,particle size distribution(PSD),and particle settling velocity distribution(PSVD)is evaluated in this study.The analytical Vi CAs method is applied to the MBBR effluent to assess the distribution of particle settling velocities.This method is combined with microscopy imaging to relate particle size distribution to settling velocity.Three conventionally loaded MBBR systems are studied at a similar loading rate of 6.0 g/(m^(2)·day)and with different carrier types.The AnoxK^(TM)K5 carrier,a commonly used carrier,is compared to so-called thickness-restraint carriers,AnoxK^(TM)Z-carriers that are newly designed carriers to limit the biofilm thickness.Moreover,two levels of biofilm thickness,200μm and 400μm,are studied using AnoxK^(TM)Z-200 and Z-400 carriers.Statistical analysis confirms that K5 carriers demonstrated a significantly different biofilm mass,thickness,and density,in addition to distinct trends in PSD and PSVD in comparison with Z-carriers.However,in comparison of thickness-restraint carriers,Z-200 carrier results did not vary significantly compared to the Z-400 carrier.The K5 carriers showed the lowest production of suspended solids(0.7±0.3 gTSS/day),thickest biofilm(281.1±8.7μm)and lowest biofilm density(65.0±1.5 kg/m^(3)).The K5 effluent solids also showed enhanced settling behaviour,consisting of larger particles with faster settling velocities.
文摘Dilute suspension of particles with same density and size develops clusters when settle at high Reynolds number(≥250).It is due to particles entrapment in the wakes produced by upstream particles.In this work,this phenomenon is studied for suspension having particles with different densities by numerical simulations.The particle-fluid interactions are modelled using immersed boundary method and inter-particle collisions are modelled using discrete element method.In simulations,settling Reynolds number is always kept above 250 and the suspension solid volume fraction is nearly 0.1 percent.Two particle density ratios(i.e.density of heavy particles to lighter particles)equal to 4:1 and 2:1 and particles with same density are studied.For each density ratio,the percentage volume fraction of each particle density is nearly varied from 0.8 to 0.2.Settling characteristics such as microstructures of settling particle,average settling velocity and velocity fluctuations of settling particles are studied.Simulations show that for different density particles settling characteristics of suspension is largely dominated by heavy particles.At the end of paper,the underlying physics is explained for the anomalies observed in simulation.
基金supported by the Major Program of the National Natural Science Foundation of China with Grant No. 10632070
文摘The drag on non-spherical particles is an important basic parameter for multi-phase flows such as in biomass combustion, chemical blending, and mineral processing. Though there is much experimental research on such particles, there are few results for cuboids. This paper presents data for cuboids with a square base in static glycerin-water solutions of various volume concentrations. Complex motions were observed and characterized. A dimensionless expression is given for terminal velocity ut as a function of Archimedes number Ar which is used to develop an accurate correlation for friction factor CD. The accuracy of the correlation is 7.9% compared to experimental data in the literature. For both square plates and square rods, the terminal velocity per unit mass, ut/mp, was used to characterize the influence of narticle geometry on velocity, which was shown to be linear.