期刊文献+
共找到1,931篇文章
< 1 2 97 >
每页显示 20 50 100
Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
1
作者 王奕涵 章海锋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期352-363,共12页
Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded p... Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm. 展开更多
关键词 magnetized plasma photonic crystals improved particle swarm optimization algorithm nonreciprocal ultra-wide band absorption angular insensitivity
下载PDF
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
2
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IAPSO) algorithm minimum makespan
下载PDF
DOA and Power Estimation Using Genetic Algorithm and Fuzzy Discrete Particle Swarm Optimization 被引量:3
3
作者 Jia-Zhou Liu Zhi-Qin Zhao +1 位作者 Zi-Yuan He Qing-Huo Liu 《Journal of Electronic Science and Technology》 CAS 2014年第1期71-75,共5页
Aiming to reduce the computational costs and converge to global optimum, a novel method is proposed to solve the optimization of a cost function in the estimation of direction of arrival(DOA). In this method, a geneti... Aiming to reduce the computational costs and converge to global optimum, a novel method is proposed to solve the optimization of a cost function in the estimation of direction of arrival(DOA). In this method, a genetic algorithm(GA) and fuzzy discrete particle swarm optimization(FDPSO) are applied to optimize the direction of arrival and power parameters of the mode simultaneously. Firstly, the GA algorithm is applied to make the solution fall into the global searching. Secondly, the FDPSO method is utilized to narrow down the search field. In FDPSO, a chaotic factor and a crossover method are added to speed up the convergence. This approach has been demonstrated through some computational simulations. It is shown that the proposed algorithm can estimate both the DOA and the powers accurately. It is more efficient than some present methods, such as the Newton-like algorithm, Akaike information critical(AIC), particle swarm optimization(PSO), and genetic algorithm with particle swarm optimization(GA-PSO). 展开更多
关键词 离散粒子群优化 遗传算法 DOA 模糊 粒子群优化算法 估算 功耗 全局搜索
下载PDF
Robot stereo vision calibration method with genetic algorithm and particle swarm optimization 被引量:1
4
作者 汪首坤 李德龙 +1 位作者 郭俊杰 王军政 《Journal of Beijing Institute of Technology》 EI CAS 2013年第2期213-221,共9页
Accurate stereo vision calibration is a preliminary step towards highprecision visual positioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a threest... Accurate stereo vision calibration is a preliminary step towards highprecision visual positioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a threestage calibration method based on hybrid intelligent optimization is proposed for nonlinear camera models in this paper. The motivation is to improve the accuracy of the calibration process. In this approach, the stereo vision calibration is considered as an optimization problem that can be solved by the GA and PSO. The initial linear values can be obtained in the first stage. Then in the second stage, two cameras' parameters are optimized separately. Finally, the integrated optimized calibration of two models is obtained in the third stage. Direct linear transformation (DLT), GA and PSO are individually used in three stages. It is shown that the results of every stage can correctly find nearoptimal solution and it can be used to initialize the next stage. Simulation analysis and actual experimental results indicate that this calibration method works more accurate and robust in noisy environment compared with traditional calibration methods. The proposed method can fulfill the requirements of robot sophisticated visual operation. 展开更多
关键词 计算机 软件 专用软件 应用软件
下载PDF
Research on Flexible Job Shop Scheduling Based on Improved Two-Layer Optimization Algorithm
5
作者 Qinhui Liu Laizheng Zhu +2 位作者 Zhijie Gao Jilong Wang Jiang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期811-843,共33页
To improve the productivity,the resource utilization and reduce the production cost of flexible job shops,this paper designs an improved two-layer optimization algorithm for the dual-resource scheduling optimization p... To improve the productivity,the resource utilization and reduce the production cost of flexible job shops,this paper designs an improved two-layer optimization algorithm for the dual-resource scheduling optimization problem of flexible job shop considering workpiece batching.Firstly,a mathematical model is established to minimize the maximum completion time.Secondly,an improved two-layer optimization algorithm is designed:the outer layer algorithm uses an improved PSO(Particle Swarm Optimization)to solve the workpiece batching problem,and the inner layer algorithm uses an improved GA(Genetic Algorithm)to solve the dual-resource scheduling problem.Then,a rescheduling method is designed to solve the task disturbance problem,represented by machine failures,occurring in the workshop production process.Finally,the superiority and effectiveness of the improved two-layer optimization algorithm are verified by two typical cases.The case results show that the improved two-layer optimization algorithm increases the average productivity by 7.44% compared to the ordinary two-layer optimization algorithm.By setting the different numbers of AGVs(Automated Guided Vehicles)and analyzing the impact on the production cycle of the whole order,this paper uses two indicators,the maximum completion time decreasing rate and the average AGV load time,to obtain the optimal number of AGVs,which saves the cost of production while ensuring the production efficiency.This research combines the solved problem with the real production process,which improves the productivity and reduces the production cost of the flexible job shop,and provides new ideas for the subsequent research. 展开更多
关键词 Dual resource scheduling workpiece batching RESCHEDULING particle swarm optimization genetic algorithm
下载PDF
Optimization of Fairhurst-Cook Model for 2-D Wing Cracks Using Ant Colony Optimization (ACO), Particle Swarm Intelligence (PSO), and Genetic Algorithm (GA)
6
作者 Mohammad Najjarpour Hossein Jalalifar 《Journal of Applied Mathematics and Physics》 2018年第8期1581-1595,共15页
The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the slid... The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack. 展开更多
关键词 WING Crack Fairhorst-Cook Model Sensitivity Analysis OPTIMIZATION particle swarm INTELLIGENCE (PSO) Ant Colony OPTIMIZATION (ACO) genetic algorithm (GA)
下载PDF
Particle Swarm Optimization Algorithm vs Genetic Algorithm to Develop Integrated Scheme for Obtaining Optimal Mechanical Structure and Adaptive Controller of a Robot
7
作者 Rega Rajendra Dilip K. Pratihar 《Intelligent Control and Automation》 2011年第4期430-449,共20页
The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipula... The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipulator solving tracking problems. The proposed design scheme optimizes various parameters belonging to different domains (that is, link geometry, mass distribution, moment of inertia, control gains) concurrently to design manipulator, which can track some given paths accurately with a minimum power consumption. The main strength of this study lies with the design of an integrated scheme to solve the above problem. Both real-coded Genetic Algorithm and Particle Swarm Optimization are used to solve this complex optimization problem. Four approaches have been developed and their performances are compared. Particle Swarm Optimization is found to perform better than the Genetic Algorithm, as the former carries out both global and local searches simultaneously, whereas the latter concentrates mainly on the global search. Controllers with adaptive gain values have shown better performance compared to the conventional ones, as expected. 展开更多
关键词 MANIPULATOR OPTIMAL Structure Adaptive CONTROLLER genetic algorithm Neural Networks particle swarm Optimization
下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
8
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 improved particle swarm Optimization algorithm Double POPULATIONS MULTI-OBJECTIVE Adaptive Strategy CHAOTIC SEQUENCE
下载PDF
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
9
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 Optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
下载PDF
Comparison of Parallel Genetic Algorithm and Particle Swarm Optimization for Parameter Calibration in Hydrological Simulation
10
作者 Xinyu Zhang Yang Li Genshen Chu 《Data Intelligence》 EI 2023年第4期904-922,共19页
Parameter calibration is an important part of hydrological simulation and affects the final simulation results.In this paper,we introduce heuristic optimization algorithms,genetic algorithm(GA)to cope with the complex... Parameter calibration is an important part of hydrological simulation and affects the final simulation results.In this paper,we introduce heuristic optimization algorithms,genetic algorithm(GA)to cope with the complexity of the parameter calibration problem,and use particle swarm optimization algorithm(PsO)as a comparison.For large-scale hydrological simulations,we use a multilevel parallel parameter calibration framework to make full use of processor resources,and accelerate the process of solving high-dimensional parameter calibration.Further,we test and apply the experiments on domestic supercomputers.The results of parameter calibration with GA and PSO can basically reach the ideal value of 0.65 and above,with PSO achieving a speedup of 58.52 on TianHe-2 supercomputer.The experimental results indicate that using a parallel implementation on multicore CPUs makes high-dimensional parameter calibration in large-scale hydrological simulation possible.Moreover,our comparison of the two algorithms shows that the GA obtains better calibration results,and the PSO has a more pronounced acceleration effect. 展开更多
关键词 Hydrologic simulation Parameter calibration genetic algorithm particle swarm optimization
原文传递
Hybrid Global Optimization Algorithm for Feature Selection
11
作者 Ahmad Taher Azar Zafar Iqbal Khan +1 位作者 Syed Umar Amin Khaled M.Fouad 《Computers, Materials & Continua》 SCIE EI 2023年第1期2021-2037,共17页
This paper proposes Parallelized Linear Time-Variant Acceleration Coefficients and Inertial Weight of Particle Swarm Optimization algorithm(PLTVACIW-PSO).Its designed has introduced the benefits of Parallel computing ... This paper proposes Parallelized Linear Time-Variant Acceleration Coefficients and Inertial Weight of Particle Swarm Optimization algorithm(PLTVACIW-PSO).Its designed has introduced the benefits of Parallel computing into the combined power of TVAC(Time-Variant Acceleration Coefficients)and IW(Inertial Weight).Proposed algorithm has been tested against linear,non-linear,traditional,andmultiswarmbased optimization algorithms.An experimental study is performed in two stages to assess the proposed PLTVACIW-PSO.Phase I uses 12 recognized Standard Benchmarks methods to evaluate the comparative performance of the proposed PLTVACIWPSO vs.IW based Particle Swarm Optimization(PSO)algorithms,TVAC based PSO algorithms,traditional PSO,Genetic algorithms(GA),Differential evolution(DE),and,finally,Flower Pollination(FP)algorithms.In phase II,the proposed PLTVACIW-PSO uses the same 12 known Benchmark functions to test its performance against the BAT(BA)and Multi-Swarm BAT algorithms.In phase III,the proposed PLTVACIW-PSO is employed to augment the feature selection problem formedical datasets.This experimental study shows that the planned PLTVACIW-PSO outpaces the performances of other comparable algorithms.Outcomes from the experiments shows that the PLTVACIW-PSO is capable of outlining a feature subset that is capable of enhancing the classification efficiency and gives the minimal subset of the core features. 展开更多
关键词 particle swarm optimization(PSO) time-variant acceleration coefficients(TVAC) genetic algorithms differential evolution feature selection medical data
下载PDF
Enhancing resource allocation in edge and fog-cloud computing with genetic algorithm and particle swarm optimization
12
作者 Saad-Eddine Chafi Younes Balboul +2 位作者 Mohammed Fattah Said Mazer Moulhime El Bekkali 《Intelligent and Converged Networks》 EI 2023年第4期273-279,共7页
Evolutionary algorithms have gained significant attention from researchers as effective solutions for various optimization problems.Genetic Algorithm(GA)is widely popular due to its logical approach,broad applicabilit... Evolutionary algorithms have gained significant attention from researchers as effective solutions for various optimization problems.Genetic Algorithm(GA)is widely popular due to its logical approach,broad applicability,and ability to tackle complex issues encountered in engineering systems.However,GA is known for its high implementation cost and typically requires a large number of iterations.On the other hand,Particle Swarm Optimization(PSO)is a relatively new heuristic technique inspired by the collective behaviors of real organisms.Both GA and PSO algorithms are prominent heuristic optimization methods that belong to the population-based approaches family.While they are often seen as competitors,their efficiency heavily relies on the parameter values chosen and the specific optimization problem at hand.In this study,we aim to compare the runtime performance of GA and PSO algorithms within a cutting-edge edge and fog cloud architecture.Through extensive experiments and performance evaluations,the authors demonstrate the effectiveness of GA and PSO algorithms in improving resource allocation in edge and fog cloud computing scenarios using FogWorkflowSim simulator.The comparative analysis sheds light on the strengths and limitations of each algorithm,providing valuable insights for researchers and practitioners in the field. 展开更多
关键词 particle swarm optimization genetic algorithm performance evaluation edge and fog cloud FogWorkflowSim
原文传递
Multi-objective reservoir operation using particle swarm optimization with adaptive random inertia weights 被引量:9
13
作者 Hai-tao Chen Wen-chuan Wang +1 位作者 Xiao-nan Chen Lin Qiu 《Water Science and Engineering》 EI CAS CSCD 2020年第2期136-144,共9页
Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algori... Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified. 展开更多
关键词 particle swarm optimization genetic algorithm Random inertia weight Multi-objective reservoir operation Reservoir group Panjiakou Reservoir
下载PDF
Hybrid Multipopulation Cellular Genetic Algorithm and Its Performance 被引量:2
14
作者 黎明 鲁宇明 揭丽琳 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第4期405-412,共8页
The selection pressure of genetic algorithm reveals the degree of balance between the global exploration and local optimization.A novel algorithm called the hybrid multi-population cellular genetic algorithm(HCGA)is p... The selection pressure of genetic algorithm reveals the degree of balance between the global exploration and local optimization.A novel algorithm called the hybrid multi-population cellular genetic algorithm(HCGA)is proposed,which combines population segmentation with particle swarm optimization(PSO).The control parameters are the number of individuals in the population and the number of subpopulations.By varying these control parameters,changes in selection pressure can be investigated.Population division is found to reduce the selection pressure.In particular,low selection pressure emerges in small and highly divided populations.Besides,slight or mild selection pressure reduces the convergence speed,and thus a new mutation operator accelerates the system.HPCGA is tested in the optimization of four typical functions and the results are compared with those of the conventional cellular genetic algorithm.HPCGA is found to significantly improve global convergence rate,convergence speed and stability.Population diversity is also investigated by HPCGA.Appropriate numbers of subpopulations not only achieve a better tradeoff between global exploration and local exploitation,but also greatly improve the optimization performance of HPCGA.It is concluded that HPCGA can elucidate the scientific basis for selecting the efficient numbers of subpopulations. 展开更多
关键词 cellular genetic algorithm particle swarm optimization MULTISPECIES selection pressure DIVERSITY
下载PDF
An Effective Non-Commutative Encryption Approach with Optimized Genetic Algorithm for Ensuring Data Protection in Cloud Computing 被引量:1
15
作者 S.Jerald Nirmal Kumar S.Ravimaran M.M.Gowthul Alam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期671-697,共27页
Nowadays,succeeding safe communication and protection-sensitive data from unauthorized access above public networks are the main worries in cloud servers.Hence,to secure both data and keys ensuring secured data storag... Nowadays,succeeding safe communication and protection-sensitive data from unauthorized access above public networks are the main worries in cloud servers.Hence,to secure both data and keys ensuring secured data storage and access,our proposed work designs a Novel Quantum Key Distribution(QKD)relying upon a non-commutative encryption framework.It makes use of a Novel Quantum Key Distribution approach,which guarantees high level secured data transmission.Along with this,a shared secret is generated using Diffie Hellman(DH)to certify secured key generation at reduced time complexity.Moreover,a non-commutative approach is used,which effectively allows the users to store and access the encrypted data into the cloud server.Also,to prevent data loss or corruption caused by the insiders in the cloud,Optimized Genetic Algorithm(OGA)is utilized,which effectively recovers the data and retrieve it if the missed data without loss.It is then followed with the decryption process as if requested by the user.Thus our proposed framework ensures authentication and paves way for secure data access,with enhanced performance and reduced complexities experienced with the prior works. 展开更多
关键词 Cloud computing quantum key distribution Diffie Hellman non-commutative approach genetic algorithm particle swarm optimization
下载PDF
Improved algorithms to plan missions for agile earth observation satellites 被引量:1
16
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates on management problems of the new generation of the agile earth observation satellite(AEOS). AEOS is a key study object in many countries because of its many advantages over non-agile satellite... This study concentrates on management problems of the new generation of the agile earth observation satellite(AEOS). AEOS is a key study object in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 对地观测卫星 改进算法 卫星任务 任务规划 调度问题 规划模型 工作原理
下载PDF
Brillouin scattering spectrum character extraction based on genetic algorithm and seeker optimization algorithm
17
作者 张燕君 Jin Peijun +3 位作者 Fu Xinghu Hou Jiaoru Zhang Fangcao Xu Jinrui 《High Technology Letters》 EI CAS 2019年第4期401-407,共7页
A new hybrid optimization method based on genetic algorithm(GA)and seeker optimization algorithm(SOA)is presented in this paper.The hybrid algorithm optimizes SOA by using crossover and mutation operations in GA in or... A new hybrid optimization method based on genetic algorithm(GA)and seeker optimization algorithm(SOA)is presented in this paper.The hybrid algorithm optimizes SOA by using crossover and mutation operations in GA in order to improve the global search ability of SOA.Four algorithms,i.e.particle swarm optimization(PSO),SOA,GA and quantum-behaved particle swarm optimization(GA-QPSO)and GA-SOA are used to process the simulation and experimental data of Brillouin scattering spectrum(BSS)at different temperatures.The results show that GA-SOA improves the accuracy of extracting the center frequency shift and the minimum center frequency of Brillouin scattering spectrum compared with other three algorithms.The shift error is 0.203 MHz.Therefore,GA-SOA can be applied to the accurate extraction of BSS characteristics. 展开更多
关键词 BRILLOUIN scattering spectrum(BSS) SEEKER OPTIMIZATION algorithm(SOA) genetic algorithm(GA) particle swarm optimization(PSO) BRILLOUIN frequency shift(BFS)
下载PDF
Adaptive Resources Allocation Algorithm Based on Modified PSO for Cognitive Radio System 被引量:9
18
作者 Yi Yang Qinyu Zhang +3 位作者 Ye Wang Takahiro Emoto Masatake Akutagawa Shinsuke Konaka 《China Communications》 SCIE CSCD 2019年第5期83-92,共10页
Radio spectrum has become a rare resource due to the rapid development of wireless communication technique. Cognitive radio is one of important techniques to deal with this radio spectrum problem. But the resource all... Radio spectrum has become a rare resource due to the rapid development of wireless communication technique. Cognitive radio is one of important techniques to deal with this radio spectrum problem. But the resource allocation in cognitive radio also has its own issues, such as the flexibility of the allocation algorithm, the performance of resource allocation, and so on. In order to increase the flexibility of the allocation algorithm for cognitive radio, more and more researches are focusing on the evolutionary algorithms, such as genetic algorithm(GA), particle swarm optimization(PSO). Evolutionary algorithm can greatly improve the flexibility of the allocation algorithm for cognitive radio system in different communication scenarios, but the performances are relatively lower than the original mathematical methods. So in this paper, we proposed an adaptive resource allocation algorithm based on modified PSO for cognitive radio system to solve these problems. Modified particle swarm optimization(Modified PSO) has both genetic algorithm(GA) and particle swarm optimization(PSO)’s updating processes which makes this modified PSO overcame PSO’s own disadvantages and keep advantages. Simulation results showed our proposed algorithm has enough flexibility to meet cognitive radio systems’ requirements, and also has a better performance than original PSO. 展开更多
关键词 COGNITIVE RADIO particle swarm optimization genetic algorithm performance analysis FLEXIBILITY
下载PDF
Short-term Load Prediction of Integrated Energy System with Wavelet Neural Network Model Based on Improved Particle Swarm Optimization and Chaos Optimization Algorithm 被引量:11
19
作者 Leijiao Ge Yuanliang Li +2 位作者 Jun Yan Yuqian Wang Na Zhang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第6期1490-1499,共10页
To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)mo... To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)model optimized by the improved particle swarm optimization(IPSO)and chaos optimization algorithm(COA)for short-term load prediction of IES.The proposed model overcomes the disadvantages of the slow convergence and the tendency to fall into the local optimum in traditional WNN models.First,the Pearson correlation coefficient is employed to select the key influencing factors of load prediction.Then,the traditional particle swarm optimization(PSO)is improved by the dynamic particle inertia weight.To jump out of the local optimum,the COA is employed to search for individual optimal particles in IPSO.In the iteration,the parameters of WNN are continually optimized by IPSO-COA.Meanwhile,the feedback link is added to the proposed model,where the output error is adopted to modify the prediction results.Finally,the proposed model is employed for load prediction.The experimental simulation verifies that the proposed model significantly improves the prediction accuracy and operation efficiency compared with the artificial neural network(ANN),WNN,and PSO-WNN. 展开更多
关键词 Integrated energy system(IES) load prediction chaos optimization algorithm(COA) improved particle swarm optimization(IPSO) Pearson correlation coefficient wavelet neural network(WNN)
原文传递
Design of a Proportional-Integral-Derivative Controller for an Automatic Generation Control of Multi-area Power Thermal Systems Using Firefly Algorithm 被引量:4
20
作者 K.Jagatheesan B.Anand +3 位作者 Sourav Samanta Nilanjan Dey Amira S.Ashour Valentina E.Balas 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期503-515,共13页
Essentially, it is significant to supply the consumer with reliable and sufficient power. Since, power quality is measured by the consistency in frequency and power flow between control areas. Thus, in a power system ... Essentially, it is significant to supply the consumer with reliable and sufficient power. Since, power quality is measured by the consistency in frequency and power flow between control areas. Thus, in a power system operation and control,automatic generation control(AGC) plays a crucial role. In this paper, multi-area(Five areas: area 1, area 2, area 3, area 4 and area 5) reheat thermal power systems are considered with proportional-integral-derivative(PID) controller as a supplementary controller. Each area in the investigated power system is equipped with appropriate governor unit, turbine with reheater unit, generator and speed regulator unit. The PID controller parameters are optimized by considering nature bio-inspired firefly algorithm(FFA). The experimental results demonstrated the comparison of the proposed system performance(FFA-PID)with optimized PID controller based genetic algorithm(GAPID) and particle swarm optimization(PSO) technique(PSOPID) for the same investigated power system. The results proved the efficiency of employing the integral time absolute error(ITAE) cost function with one percent step load perturbation(1 % SLP) in area 1. The proposed system based FFA achieved the least settling time compared to using the GA or the PSO algorithms, while, it attained good results with respect to the peak overshoot/undershoot. In addition, the FFA performance is improved with the increased number of iterations which outperformed the other optimization algorithms based controller. 展开更多
关键词 Automatic generation control(AGC) FIREFLY algorithm genetic algorithm(GA) particle swarm optimization(PSO) proportional-integral-derivative(PID) CONTROLLER
下载PDF
上一页 1 2 97 下一页 到第
使用帮助 返回顶部