The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we...The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events.展开更多
Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective ...Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective optimization procedure,which enables a real-time prediction of horizontal displacement of retaining pile during construction.As opposed to the traditional stage-by-stage back analysis,time series monitoring data till the current excavation stage are utilized to form a multi-objective function.Then,the multi-objective particle swarm optimization (MOPSO) algorithm is applied for parameter identification.The optimized model parameters are immediately adopted to predict the excavation-induced pile deformation in the continuous construction stages.To achieve efficient parameter optimization and real-time prediction of system behavior,the back propagation neural network (BPNN) is established to substitute the finite element model,which is further implemented together with MOPSO for automatic operation.The proposed approach is applied in the Taihu tunnel excavation project,where the effectiveness of the method is demonstrated via the comparisons with the site monitoring data.The method is reliable with a prediction accuracy of more than 90%.Moreover,different optimization algorithms,including non-dominated sorting genetic algorithm (NSGA-II),Pareto Envelope-based Selection Algorithm II (PESA-II) and MOPSO,are compared,and their influences on the prediction accuracy at different excavation stages are studied.The results show that MOPSO has the best performance for high dimensional optimization task.展开更多
Sentiment Analysis(SA),a Machine Learning(ML)technique,is often applied in the literature.The SA technique is specifically applied to the data collected from social media sites.The research studies conducted earlier u...Sentiment Analysis(SA),a Machine Learning(ML)technique,is often applied in the literature.The SA technique is specifically applied to the data collected from social media sites.The research studies conducted earlier upon the SA of the tweets were mostly aimed at automating the feature extraction process.In this background,the current study introduces a novel method called Quantum Particle Swarm Optimization with Deep Learning-Based Sentiment Analysis on Arabic Tweets(QPSODL-SAAT).The presented QPSODL-SAAT model determines and classifies the sentiments of the tweets written in Arabic.Initially,the data pre-processing is performed to convert the raw tweets into a useful format.Then,the word2vec model is applied to generate the feature vectors.The Bidirectional Gated Recurrent Unit(BiGRU)classifier is utilized to identify and classify the sentiments.Finally,the QPSO algorithm is exploited for the optimal finetuning of the hyperparameters involved in the BiGRU model.The proposed QPSODL-SAAT model was experimentally validated using the standard datasets.An extensive comparative analysis was conducted,and the proposed model achieved a maximum accuracy of 98.35%.The outcomes confirmed the supremacy of the proposed QPSODL-SAAT model over the rest of the approaches,such as the Surface Features(SF),Generic Embeddings(GE),Arabic Sentiment Embeddings constructed using the Hybrid(ASEH)model and the Bidirectional Encoder Representations from Transformers(BERT)model.展开更多
Background:To solve the cluster analysis better,we propose a new method based on the chaotic particle swarm optimization(CPSO)algorithm.Methods:In order to enhance the performance in clustering,we propose a novel meth...Background:To solve the cluster analysis better,we propose a new method based on the chaotic particle swarm optimization(CPSO)algorithm.Methods:In order to enhance the performance in clustering,we propose a novel method based on CPSO.We first evaluate the clustering performance of this model using the variance ratio criterion(VRC)as the evaluation metric.The effectiveness of the CPSO algorithm is compared with that of the traditional particle swarm optimization(PSO)algorithm.The CPSO aims to improve the VRC value while avoiding local optimal solutions.The simulated dataset is set at three levels of overlapping:non-overlapping,partial overlapping,and severe overlapping.Finally,we compare CPSO with two other methods.Results:By observing the comparative results,our proposed CPSO method performs outstandingly.In the conditions of non-overlapping,partial overlapping,and severe overlapping,our method has the best VRC values of 1683.2,620.5,and 275.6,respectively.The mean VRC values in these three cases are 1683.2,617.8,and 222.6.Conclusion:The CPSO performed better than other methods for cluster analysis problems.CPSO is effective for cluster analysis.展开更多
The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In or...The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In order to solve the problem of the maximum likelihood expectation maximization(MLEM) algorithm which is easy to suffer the pitfalls of local optima and the particle swarm optimization(PSO) algorithm which is easy to get unreasonable flight direction and step length of particles, which leads to the invalid iteration and affect efficiency and accuracy, an improved PSO-MLEM algorithm, combined of PSO and MLEM algorithm, is proposed for neutron spectrum unfolding. The dynamic acceleration factor is used to balance the ability of global and local search, and improves the convergence speed and accuracy of the algorithm. Firstly, the Monte Carlo method was used to simulated the BSS to obtain the response function and count rates of BSS. In the simulation of count rate, four reference spectra from the IAEA Technical Report Series No. 403 were used as input parameters of the Monte Carlo method. The PSO-MLEM algorithm was used to unfold the neutron spectrum of the simulated data and was verified by the difference of the unfolded spectrum to the reference spectrum. Finally, the 252Cf neutron source was measured by BSS, and the PSO-MLEM algorithm was used to unfold the experimental neutron spectrum.Compared with maximum entropy deconvolution(MAXED), PSO and MLEM algorithm, the PSO-MLEM algorithm has fewer parameters and automatically adjusts the dynamic acceleration factor to solve the problem of local optima. The convergence speed of the PSO-MLEM algorithm is 1.4 times and 3.1 times that of the MLEM and PSO algorithms. Compared with PSO, MLEM and MAXED, the correlation coefficients of PSO-MLEM algorithm are increased by 33.1%, 33.5% and 1.9%, and the relative mean errors are decreased by 98.2%, 97.8% and 67.4%.展开更多
A new version of particle swarm optimization(PSO) called discontinuous flying particle swarm optimization(DFPSO) was proposed,where not all of the particles refreshed their positions and velocities during each iterati...A new version of particle swarm optimization(PSO) called discontinuous flying particle swarm optimization(DFPSO) was proposed,where not all of the particles refreshed their positions and velocities during each iteration step and the probability of each particle in refreshing its position and velocity was dependent on its objective function value.The effect of population size on the results was investigated.The results obtained by DFPSO have an average difference of 6% compared with those by PSO,whereas DFPSO consumes much less evaluations of objective function than PSO does.展开更多
A numerical procedure for reliability analysis of earth slope based on advanced first-order second-moment method is presented,while soil properties and pore water pressure may be considered as random variables.The fac...A numerical procedure for reliability analysis of earth slope based on advanced first-order second-moment method is presented,while soil properties and pore water pressure may be considered as random variables.The factor of safety and performance function is formulated utilizing a new approach of the Morgenstern and Price method.To evaluate the minimum reliability index defined by Hasofer and Lind and corresponding critical probabilistic slip surface,a hybrid algorithm combining chaotic particle swarm optimization and harmony search algorithm called CPSOHS is presented.The comparison of the results of the presented method,standard particle swarm optimization,and selected other methods employed in previous studies demonstrates the superior successful functioning of the new method by evaluating lower values of reliability index and factor of safety.Moreover,the presented procedure is applied for sensitivity analysis and the obtained results show the influence of soil strength parameters and probability distribution types of random variables on the reliability index of slopes.展开更多
Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, networ...Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, network reliability and the network loss are the main objective of transmission network planning. Combined with set pair analysis (SPA), particle swarm optimization (PSO), neural network (NN), a hybrid particle swarm optimization model was established with neural network and set pair analysis for transmission network planning (HPNS). Firstly, the contact degree of set pair analysis was introduced, the traditional goal set was converted into the collection of the three indicators including the identity degree, difference agree and contrary degree. On this bases, using shi(H), the three objective optimization problem was converted into single objective optimization problem. Secondly, using the fast and efficient search capabilities of PSO, the transmission network planning model based on set pair analysis was optimized. In the process of optimization, by improving the BP neural network constantly training so that the value of the fitness function of PSO becomes smaller in order to obtain the optimization program fitting the three objectives better. Finally, compared HPNS with PSO algorithm and the classic genetic algorithm, HPNS increased about 23% efficiency than THA, raised about 3.7% than PSO and improved about 2.96% than GA.展开更多
The term‘optimization’refers to the process of maximizing the beneficial attributes of a mathematical function or system while minimizing the unfavorable ones.The majority of real-world situations can be modelled as...The term‘optimization’refers to the process of maximizing the beneficial attributes of a mathematical function or system while minimizing the unfavorable ones.The majority of real-world situations can be modelled as an optimization problem.The complex nature of models restricts traditional optimization techniques to obtain a global optimal solution and paves the path for global optimization methods.Particle Swarm Optimization is a potential global optimization technique that has been widely used to address problems in a variety of fields.The idea of this research is to use exponential basis functions and the particle swarm optimization technique to find a numerical solution for the Sine-Gordan equation,whose numerical solutions show the soliton form and has diverse applications.The implemented optimization technique is employed to determine the involved parameter in the basis functions,which was previously approximated as a random number in the work reported till now in the literature.The obtained results are comparable with the results obtained in the literature.The work is presented in the form of figures and tables and is found encouraging.展开更多
This study explores the loss or degradation of the ecosystem and its service function in the Liaohe estuary coastal zone due to the deterioration ofwater quality.Aprediction systembased on support vectormachine(SVM)-p...This study explores the loss or degradation of the ecosystem and its service function in the Liaohe estuary coastal zone due to the deterioration ofwater quality.Aprediction systembased on support vectormachine(SVM)-particle swarm optimization(PSO)(SVM-PSO)algorithm is proposed under the background of deep learning.SVM-PSO algorithm is employed to analyze the pollution status of the Liaohe estuary,so is the difference in water pollution of different sea consuming types.Based on the analysis results for causes of pollution,the control countermeasures of water pollution in Liaohe estuary are put forward.The results suggest that the water pollution index prediction model based on SVM-PSO algorithm shows the maximum error of 2.41%,the average error of 1.24%in predicting the samples,the root mean square error(RMSE)of 5.36×10^(−4),and the square of correlation coefficient of 0.91.Therefore,the prediction system in this study is feasible.At present,the water pollution status of Liaohe estuary is of moderate and severe levels of eutrophication,and the water pollution status basically remains at the level of mild pollution.The general trend is fromphosphorus moderate restricted eutrophication to phosphorus restricted potential eutrophication.To sumup,the SVM-PSO algorithm shows good sewage prediction ability,which can be applied and promoted in water pollution control and has reliable reference significance.展开更多
The precision of the kernel independent component analysis( KICA) algorithm depends on the type and parameter values of kernel function. Therefore,it's of great significance to study the choice method of KICA'...The precision of the kernel independent component analysis( KICA) algorithm depends on the type and parameter values of kernel function. Therefore,it's of great significance to study the choice method of KICA's kernel parameters for improving its feature dimension reduction result. In this paper, a fitness function was established by use of the ideal of Fisher discrimination function firstly. Then the global optimal solution of fitness function was searched by particle swarm optimization( PSO) algorithm and a multi-state information dimension reduction algorithm based on PSO-KICA was established. Finally,the validity of this algorithm to enhance the precision of feature dimension reduction has been proven.展开更多
Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal ke...Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Then, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condi- tion recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA. We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure, and is helpful for fault condition recognition of complicated machines.展开更多
Nowadays,data are more and more used for intelligent modeling and prediction,and the comprehensive evaluation of data quality is getting more and more attention as a necessary means to measure whether the data are usa...Nowadays,data are more and more used for intelligent modeling and prediction,and the comprehensive evaluation of data quality is getting more and more attention as a necessary means to measure whether the data are usable or not.However,the comprehensive evaluation method of data quality mostly contains the subjective factors of the evaluator,so how to comprehensively and objectively evaluate the data has become a bottleneck that needs to be solved in the research of comprehensive evaluation method.In order to evaluate the data more comprehensively,objectively and differentially,a novel comprehensive evaluation method based on particle swarm optimization(PSO)and grey correlation analysis(GCA)is presented in this paper.At first,an improved GCA evaluation model based on the technique for order preference by similarity to an ideal solution(TOPSIS)is proposed.Then,an objective function model of maximum difference of the comprehensive evaluation values is built,and the PSO algorithm is used to optimize the weights of the improved GCA evaluation model based on the objective function model.Finally,the performance of the proposed method is investigated through parameter analysis.A performance comparison of traffic flow data is carried out,and the simulation results show that the maximum average difference between the evaluation results and its mean value(MDR)of the proposed comprehensive evaluation method is 33.24%higher than that of TOPSIS-GCA,and 6.86%higher than that of GCA.The proposed method has better differentiation than other methods,which means that it objectively and comprehensively evaluates the data from both the relevance and differentiation of the data,and the results more effectively reflect the differences in data quality,which will provide more effective data support for intelligent modeling,prediction and other applications.展开更多
Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this pa...Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this paper, a particle swarm optimization(PSO) method is introduced to solve and control a symplectic multibody system for the first time. It is first combined with the symplectic method to solve problems in uncontrolled and controlled robotic arm systems. It is shown that the results conserve the energy and keep the constraints of the chaotic motion, which demonstrates the efficiency, accuracy, and time-saving ability of the method. To make the system move along the pre-planned path, which is a functional extremum problem, a double-PSO-based instantaneous optimal control is introduced. Examples are performed to test the effectiveness of the double-PSO-based instantaneous optimal control. The results show that the method has high accuracy, a fast convergence speed, and a wide range of applications.All the above verify the immense potential applications of the PSO method in multibody system dynamics.展开更多
The flash points of organic compounds were estimated using a hybrid method that includes a simple group contribution method (GCM) implemented in an artificial neural network (ANN) with particle swarm optimization (PSO...The flash points of organic compounds were estimated using a hybrid method that includes a simple group contribution method (GCM) implemented in an artificial neural network (ANN) with particle swarm optimization (PSO). Different topologies of a multilayer neural network were studied and the optimum architecture was determined. Property data of 350 compounds were used for training the network. To discriminate different substances the molecular structures defined by the concept of the classical group contribution method were given as input variables. The capabilities of the network were tested with 155 substances not considered in the training step. The study shows that the proposed GCM+ANN+PSO method represent an excellent alternative for the estimation of flash points of organic compounds with acceptable accuracy (AARD = 1.8%; AAE = 6.2 K).展开更多
The mechanism type plays a decisive role in the mechanical performance of robotic manipulators. Feasible mechanism types can be obtained by applying appropriate type synthesis theory, but there is still a lack of effe...The mechanism type plays a decisive role in the mechanical performance of robotic manipulators. Feasible mechanism types can be obtained by applying appropriate type synthesis theory, but there is still a lack of effective and efficient methods for the optimum selection among different types of mechanism candidates. This paper presents a new strategy for the purpose of optimum mechanism type selection based on the modified particle swarm optimization method. The concept of sub-swarm is introduced to represent the different mechanisms generated by the type synthesis, and a competitive mechanism is employed between the sub-swarms to reassign their population size according to the relative performances of the mechanism candidates to implement the optimization. Combining with a modular modeling approach for fast calculation of the performance index of the potential candidates, the proposed method is applied to determine the optimum mechanism type among the potential candidates for the desired manipulator. The effectiveness and efficiency of the proposed method is demonstrated through a case study on the optimum selection of mechanism type of a heavy manipulator where six feasible candidates are considered with force capability as the specific performance index. The optimization result shows that the fitness of the optimum mechanism type for the considered heavy manipulator can be up to 0.578 5. This research provides the instruction in optimum selection of mechanism types for robotic manipulators.展开更多
Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and ther...Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and thereby are only applicable only to simple,single,or multiple degree-of-freedom structures.The current approaches to optimization procedures take a specific damper with its properties and observe the effect of applying time history data to the building;however,there are many different dampers and isolators that can be used.Furthermore,there is a lack of studies regarding the optimum location for various viscous and wall dampers.The main aim of this study is hybridization of the particle swarm optimization(PSO) and gravitational search algorithm(GSA) to optimize the performance of earthquake energy dissipation systems(i.e.,damper devices) simultaneously with optimizing the characteristics of the structure.Four types of structural dampers device are considered in this study:(ⅰ) variable stiffness bracing(VSB) system,(ⅱ) rubber wall damper(RWD),(ⅲ) nonlinear conical spring bracing(NCSB) device,(iv) and multi-action stiffener(MAS) device.Since many parameters may affect the design of seismic resistant structures,this study proposes a hybrid of PSO and GSA to develop a hybrid,multi-objective optimization method to resolve the aforementioned problems.The characteristics of the above-mentioned damper devices as well as the section size for structural beams and columns are considered as variables for development of the PSO-GSA optimization algorithm to minimize structural seismic response in terms of nodal displacement(in three directions) as well as plastic hinge formation in structural members simultaneously with the weight of the structure.After that,the optimization algorithm is implemented to identify the best position of the damper device in the structural frame to have the maximum effect and minimize the seismic structure response.To examine the performance of the proposed PSO-GSA optimization method,it has been applied to a three-story reinforced structure equipped with a seismic damper device.The results revealed that the method successfully optimized the earthquake energy dissipation systems and reduced the effects of earthquakes on structures,which significantly increase the building’s stability and safety during seismic excitation.The analysis results showed a reduction in the seismic response of the structure regarding the formation of plastic hinges in structural members as well as the displacement of each story to approximately 99.63%,60.5%,79.13% and 57.42% for the VSB device,RWD,NCSB device,and MAS device,respectively.This shows that using the PSO-GSA optimization algorithm and optimized damper devices in the structure resulted in no structural damage due to earthquake vibration.展开更多
To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integr...To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.展开更多
In many fields such as signal processing,machine learning,pattern recognition and data mining,it is common practice to process datasets containing huge numbers of features.In such cases,Feature Selection(FS)is often i...In many fields such as signal processing,machine learning,pattern recognition and data mining,it is common practice to process datasets containing huge numbers of features.In such cases,Feature Selection(FS)is often involved.Meanwhile,owing to their excellent global search ability,evolutionary computation techniques have been widely employed to the FS.So,as a powerful global search method and calculation fast than other EC algorithms,PSO can solve features selection problems well.However,when facing a large number of feature selection,the efficiency of PSO drops significantly.Therefore,plenty of works have been done to improve this situation.Besides,many studies have shown that an appropriate population initialization can effectively help to improve this problem.So,basing on PSO,this paper introduces a new feature selection method with filter-based population.The proposed algorithm uses Principal Component Analysis(PCA)to measure the importance of features first,then based on the sorted feature information,a population initialization method using the threshold selection and the mixed initialization is proposed.The experiments were performed on several datasets and compared to several other related algorithms.Experimental results show that the accuracy of PSO to solve feature selection problems is significantly improved after using proposed method.展开更多
This paper presents a technique for Medium Term Load Forecasting (MTLF) using Particle Swarm Optimization (PSO) algorithm based on Least Squares Regression Methods to forecast the electric loads of the Jordanian grid ...This paper presents a technique for Medium Term Load Forecasting (MTLF) using Particle Swarm Optimization (PSO) algorithm based on Least Squares Regression Methods to forecast the electric loads of the Jordanian grid for year of 2015. Linear, quadratic and exponential forecast models have been examined to perform this study and compared with the Auto Regressive (AR) model. MTLF models were influenced by the weather which should be considered when predicting the future peak load demand in terms of months and weeks. The main contribution for this paper is the conduction of MTLF study for Jordan on weekly and monthly basis using real data obtained from National Electric Power Company NEPCO. This study is aimed to develop practical models and algorithm techniques for MTLF to be used by the operators of Jordan power grid. The results are compared with the actual peak load data to attain minimum percentage error. The value of the forecasted weekly and monthly peak loads obtained from these models is examined using Least Square Error (LSE). Actual reported data from NEPCO are used to analyze the performance of the proposed approach and the results are reported and compared with the results obtained from PSO algorithm and AR model.展开更多
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant no.2019QZKK0904)Natural Science Foundation of Hebei Province(Grant no.D2022403032)S&T Program of Hebei(Grant no.E2021403001).
文摘The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events.
基金supported by the National Natural Science Foundation of China(Grant Nos.52208380 and 51979270)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.SKLGME021022).
文摘Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective optimization procedure,which enables a real-time prediction of horizontal displacement of retaining pile during construction.As opposed to the traditional stage-by-stage back analysis,time series monitoring data till the current excavation stage are utilized to form a multi-objective function.Then,the multi-objective particle swarm optimization (MOPSO) algorithm is applied for parameter identification.The optimized model parameters are immediately adopted to predict the excavation-induced pile deformation in the continuous construction stages.To achieve efficient parameter optimization and real-time prediction of system behavior,the back propagation neural network (BPNN) is established to substitute the finite element model,which is further implemented together with MOPSO for automatic operation.The proposed approach is applied in the Taihu tunnel excavation project,where the effectiveness of the method is demonstrated via the comparisons with the site monitoring data.The method is reliable with a prediction accuracy of more than 90%.Moreover,different optimization algorithms,including non-dominated sorting genetic algorithm (NSGA-II),Pareto Envelope-based Selection Algorithm II (PESA-II) and MOPSO,are compared,and their influences on the prediction accuracy at different excavation stages are studied.The results show that MOPSO has the best performance for high dimensional optimization task.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Small Groups Project under Grant Number(120/43)Princess Nourah Bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R263)+1 种基金Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura Universitysupporting this work by Grant Code:(22UQU4310373DSR36).
文摘Sentiment Analysis(SA),a Machine Learning(ML)technique,is often applied in the literature.The SA technique is specifically applied to the data collected from social media sites.The research studies conducted earlier upon the SA of the tweets were mostly aimed at automating the feature extraction process.In this background,the current study introduces a novel method called Quantum Particle Swarm Optimization with Deep Learning-Based Sentiment Analysis on Arabic Tweets(QPSODL-SAAT).The presented QPSODL-SAAT model determines and classifies the sentiments of the tweets written in Arabic.Initially,the data pre-processing is performed to convert the raw tweets into a useful format.Then,the word2vec model is applied to generate the feature vectors.The Bidirectional Gated Recurrent Unit(BiGRU)classifier is utilized to identify and classify the sentiments.Finally,the QPSO algorithm is exploited for the optimal finetuning of the hyperparameters involved in the BiGRU model.The proposed QPSODL-SAAT model was experimentally validated using the standard datasets.An extensive comparative analysis was conducted,and the proposed model achieved a maximum accuracy of 98.35%.The outcomes confirmed the supremacy of the proposed QPSODL-SAAT model over the rest of the approaches,such as the Surface Features(SF),Generic Embeddings(GE),Arabic Sentiment Embeddings constructed using the Hybrid(ASEH)model and the Bidirectional Encoder Representations from Transformers(BERT)model.
文摘Background:To solve the cluster analysis better,we propose a new method based on the chaotic particle swarm optimization(CPSO)algorithm.Methods:In order to enhance the performance in clustering,we propose a novel method based on CPSO.We first evaluate the clustering performance of this model using the variance ratio criterion(VRC)as the evaluation metric.The effectiveness of the CPSO algorithm is compared with that of the traditional particle swarm optimization(PSO)algorithm.The CPSO aims to improve the VRC value while avoiding local optimal solutions.The simulated dataset is set at three levels of overlapping:non-overlapping,partial overlapping,and severe overlapping.Finally,we compare CPSO with two other methods.Results:By observing the comparative results,our proposed CPSO method performs outstandingly.In the conditions of non-overlapping,partial overlapping,and severe overlapping,our method has the best VRC values of 1683.2,620.5,and 275.6,respectively.The mean VRC values in these three cases are 1683.2,617.8,and 222.6.Conclusion:The CPSO performed better than other methods for cluster analysis problems.CPSO is effective for cluster analysis.
基金supported by the National Natural science Foundation of China (No. 42127807)the Sichuan Science and Technology Program (No. 2020YJ0334)the Sichuan Science and Technology Breeding Program (No. 2022041)。
文摘The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In order to solve the problem of the maximum likelihood expectation maximization(MLEM) algorithm which is easy to suffer the pitfalls of local optima and the particle swarm optimization(PSO) algorithm which is easy to get unreasonable flight direction and step length of particles, which leads to the invalid iteration and affect efficiency and accuracy, an improved PSO-MLEM algorithm, combined of PSO and MLEM algorithm, is proposed for neutron spectrum unfolding. The dynamic acceleration factor is used to balance the ability of global and local search, and improves the convergence speed and accuracy of the algorithm. Firstly, the Monte Carlo method was used to simulated the BSS to obtain the response function and count rates of BSS. In the simulation of count rate, four reference spectra from the IAEA Technical Report Series No. 403 were used as input parameters of the Monte Carlo method. The PSO-MLEM algorithm was used to unfold the neutron spectrum of the simulated data and was verified by the difference of the unfolded spectrum to the reference spectrum. Finally, the 252Cf neutron source was measured by BSS, and the PSO-MLEM algorithm was used to unfold the experimental neutron spectrum.Compared with maximum entropy deconvolution(MAXED), PSO and MLEM algorithm, the PSO-MLEM algorithm has fewer parameters and automatically adjusts the dynamic acceleration factor to solve the problem of local optima. The convergence speed of the PSO-MLEM algorithm is 1.4 times and 3.1 times that of the MLEM and PSO algorithms. Compared with PSO, MLEM and MAXED, the correlation coefficients of PSO-MLEM algorithm are increased by 33.1%, 33.5% and 1.9%, and the relative mean errors are decreased by 98.2%, 97.8% and 67.4%.
基金Project(50874064) supported by the National Natural Science Foundation of ChinaKey Project(Z2007F10) supported by the Natural Science Foundation of Shandong Province,China
文摘A new version of particle swarm optimization(PSO) called discontinuous flying particle swarm optimization(DFPSO) was proposed,where not all of the particles refreshed their positions and velocities during each iteration step and the probability of each particle in refreshing its position and velocity was dependent on its objective function value.The effect of population size on the results was investigated.The results obtained by DFPSO have an average difference of 6% compared with those by PSO,whereas DFPSO consumes much less evaluations of objective function than PSO does.
基金supported by the Ministry of Higher Education, Malaysia (Grant No.UKM-AP-PLW-04-2009/2)
文摘A numerical procedure for reliability analysis of earth slope based on advanced first-order second-moment method is presented,while soil properties and pore water pressure may be considered as random variables.The factor of safety and performance function is formulated utilizing a new approach of the Morgenstern and Price method.To evaluate the minimum reliability index defined by Hasofer and Lind and corresponding critical probabilistic slip surface,a hybrid algorithm combining chaotic particle swarm optimization and harmony search algorithm called CPSOHS is presented.The comparison of the results of the presented method,standard particle swarm optimization,and selected other methods employed in previous studies demonstrates the superior successful functioning of the new method by evaluating lower values of reliability index and factor of safety.Moreover,the presented procedure is applied for sensitivity analysis and the obtained results show the influence of soil strength parameters and probability distribution types of random variables on the reliability index of slopes.
基金Projects(70373017 70572090) supported by the National Natural Science Foundation of China
文摘Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, network reliability and the network loss are the main objective of transmission network planning. Combined with set pair analysis (SPA), particle swarm optimization (PSO), neural network (NN), a hybrid particle swarm optimization model was established with neural network and set pair analysis for transmission network planning (HPNS). Firstly, the contact degree of set pair analysis was introduced, the traditional goal set was converted into the collection of the three indicators including the identity degree, difference agree and contrary degree. On this bases, using shi(H), the three objective optimization problem was converted into single objective optimization problem. Secondly, using the fast and efficient search capabilities of PSO, the transmission network planning model based on set pair analysis was optimized. In the process of optimization, by improving the BP neural network constantly training so that the value of the fitness function of PSO becomes smaller in order to obtain the optimization program fitting the three objectives better. Finally, compared HPNS with PSO algorithm and the classic genetic algorithm, HPNS increased about 23% efficiency than THA, raised about 3.7% than PSO and improved about 2.96% than GA.
文摘The term‘optimization’refers to the process of maximizing the beneficial attributes of a mathematical function or system while minimizing the unfavorable ones.The majority of real-world situations can be modelled as an optimization problem.The complex nature of models restricts traditional optimization techniques to obtain a global optimal solution and paves the path for global optimization methods.Particle Swarm Optimization is a potential global optimization technique that has been widely used to address problems in a variety of fields.The idea of this research is to use exponential basis functions and the particle swarm optimization technique to find a numerical solution for the Sine-Gordan equation,whose numerical solutions show the soliton form and has diverse applications.The implemented optimization technique is employed to determine the involved parameter in the basis functions,which was previously approximated as a random number in the work reported till now in the literature.The obtained results are comparable with the results obtained in the literature.The work is presented in the form of figures and tables and is found encouraging.
基金National Key R&D Program of China(2019YFC1407700)National Natural Science Foundation of China(Grant 41606141)Study on the mechanisms of macrobenthos responses to oil spill based on MINE method.
文摘This study explores the loss or degradation of the ecosystem and its service function in the Liaohe estuary coastal zone due to the deterioration ofwater quality.Aprediction systembased on support vectormachine(SVM)-particle swarm optimization(PSO)(SVM-PSO)algorithm is proposed under the background of deep learning.SVM-PSO algorithm is employed to analyze the pollution status of the Liaohe estuary,so is the difference in water pollution of different sea consuming types.Based on the analysis results for causes of pollution,the control countermeasures of water pollution in Liaohe estuary are put forward.The results suggest that the water pollution index prediction model based on SVM-PSO algorithm shows the maximum error of 2.41%,the average error of 1.24%in predicting the samples,the root mean square error(RMSE)of 5.36×10^(−4),and the square of correlation coefficient of 0.91.Therefore,the prediction system in this study is feasible.At present,the water pollution status of Liaohe estuary is of moderate and severe levels of eutrophication,and the water pollution status basically remains at the level of mild pollution.The general trend is fromphosphorus moderate restricted eutrophication to phosphorus restricted potential eutrophication.To sumup,the SVM-PSO algorithm shows good sewage prediction ability,which can be applied and promoted in water pollution control and has reliable reference significance.
文摘The precision of the kernel independent component analysis( KICA) algorithm depends on the type and parameter values of kernel function. Therefore,it's of great significance to study the choice method of KICA's kernel parameters for improving its feature dimension reduction result. In this paper, a fitness function was established by use of the ideal of Fisher discrimination function firstly. Then the global optimal solution of fitness function was searched by particle swarm optimization( PSO) algorithm and a multi-state information dimension reduction algorithm based on PSO-KICA was established. Finally,the validity of this algorithm to enhance the precision of feature dimension reduction has been proven.
基金supported by National Natural Science Foundation under Grant No.50875247Shanxi Province Natural Science Foundation under Grant No.2009011026-1
文摘Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Then, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condi- tion recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA. We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure, and is helpful for fault condition recognition of complicated machines.
基金the Scientific Research Funding Project of Liaoning Education Department of China under Grant No.JDL2020005,No.LJKZ0485the National Key Research and Development Program of China under Grant No.2018YFA0704605.
文摘Nowadays,data are more and more used for intelligent modeling and prediction,and the comprehensive evaluation of data quality is getting more and more attention as a necessary means to measure whether the data are usable or not.However,the comprehensive evaluation method of data quality mostly contains the subjective factors of the evaluator,so how to comprehensively and objectively evaluate the data has become a bottleneck that needs to be solved in the research of comprehensive evaluation method.In order to evaluate the data more comprehensively,objectively and differentially,a novel comprehensive evaluation method based on particle swarm optimization(PSO)and grey correlation analysis(GCA)is presented in this paper.At first,an improved GCA evaluation model based on the technique for order preference by similarity to an ideal solution(TOPSIS)is proposed.Then,an objective function model of maximum difference of the comprehensive evaluation values is built,and the PSO algorithm is used to optimize the weights of the improved GCA evaluation model based on the objective function model.Finally,the performance of the proposed method is investigated through parameter analysis.A performance comparison of traffic flow data is carried out,and the simulation results show that the maximum average difference between the evaluation results and its mean value(MDR)of the proposed comprehensive evaluation method is 33.24%higher than that of TOPSIS-GCA,and 6.86%higher than that of GCA.The proposed method has better differentiation than other methods,which means that it objectively and comprehensively evaluates the data from both the relevance and differentiation of the data,and the results more effectively reflect the differences in data quality,which will provide more effective data support for intelligent modeling,prediction and other applications.
基金Project supported by the National Natural Science Foundation of China(Nos.91648101 and11672233)the Northwestern Polytechnical University(NPU)Foundation for Fundamental Research(No.3102017AX008)the National Training Program of Innovation and Entrepreneurship for Undergraduates(No.S201710699033)
文摘Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this paper, a particle swarm optimization(PSO) method is introduced to solve and control a symplectic multibody system for the first time. It is first combined with the symplectic method to solve problems in uncontrolled and controlled robotic arm systems. It is shown that the results conserve the energy and keep the constraints of the chaotic motion, which demonstrates the efficiency, accuracy, and time-saving ability of the method. To make the system move along the pre-planned path, which is a functional extremum problem, a double-PSO-based instantaneous optimal control is introduced. Examples are performed to test the effectiveness of the double-PSO-based instantaneous optimal control. The results show that the method has high accuracy, a fast convergence speed, and a wide range of applications.All the above verify the immense potential applications of the PSO method in multibody system dynamics.
文摘The flash points of organic compounds were estimated using a hybrid method that includes a simple group contribution method (GCM) implemented in an artificial neural network (ANN) with particle swarm optimization (PSO). Different topologies of a multilayer neural network were studied and the optimum architecture was determined. Property data of 350 compounds were used for training the network. To discriminate different substances the molecular structures defined by the concept of the classical group contribution method were given as input variables. The capabilities of the network were tested with 155 substances not considered in the training step. The study shows that the proposed GCM+ANN+PSO method represent an excellent alternative for the estimation of flash points of organic compounds with acceptable accuracy (AARD = 1.8%; AAE = 6.2 K).
基金supported by National Natural Science Foundation of China (Grant No. 51075259)Program for New Century Excellent Talents in University of Ministry of Education, China (Grant No. NCET-10-0579)+1 种基金National Basic Research Program of China (973 program, Grant No.2006CB705407)Key Technologies R&D Program of Shanghai,China (Grant No. 10111100203)
文摘The mechanism type plays a decisive role in the mechanical performance of robotic manipulators. Feasible mechanism types can be obtained by applying appropriate type synthesis theory, but there is still a lack of effective and efficient methods for the optimum selection among different types of mechanism candidates. This paper presents a new strategy for the purpose of optimum mechanism type selection based on the modified particle swarm optimization method. The concept of sub-swarm is introduced to represent the different mechanisms generated by the type synthesis, and a competitive mechanism is employed between the sub-swarms to reassign their population size according to the relative performances of the mechanism candidates to implement the optimization. Combining with a modular modeling approach for fast calculation of the performance index of the potential candidates, the proposed method is applied to determine the optimum mechanism type among the potential candidates for the desired manipulator. The effectiveness and efficiency of the proposed method is demonstrated through a case study on the optimum selection of mechanism type of a heavy manipulator where six feasible candidates are considered with force capability as the specific performance index. The optimization result shows that the fitness of the optimum mechanism type for the considered heavy manipulator can be up to 0.578 5. This research provides the instruction in optimum selection of mechanism types for robotic manipulators.
基金University Putra Malaysia under Putra Grant No.9531200。
文摘Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and thereby are only applicable only to simple,single,or multiple degree-of-freedom structures.The current approaches to optimization procedures take a specific damper with its properties and observe the effect of applying time history data to the building;however,there are many different dampers and isolators that can be used.Furthermore,there is a lack of studies regarding the optimum location for various viscous and wall dampers.The main aim of this study is hybridization of the particle swarm optimization(PSO) and gravitational search algorithm(GSA) to optimize the performance of earthquake energy dissipation systems(i.e.,damper devices) simultaneously with optimizing the characteristics of the structure.Four types of structural dampers device are considered in this study:(ⅰ) variable stiffness bracing(VSB) system,(ⅱ) rubber wall damper(RWD),(ⅲ) nonlinear conical spring bracing(NCSB) device,(iv) and multi-action stiffener(MAS) device.Since many parameters may affect the design of seismic resistant structures,this study proposes a hybrid of PSO and GSA to develop a hybrid,multi-objective optimization method to resolve the aforementioned problems.The characteristics of the above-mentioned damper devices as well as the section size for structural beams and columns are considered as variables for development of the PSO-GSA optimization algorithm to minimize structural seismic response in terms of nodal displacement(in three directions) as well as plastic hinge formation in structural members simultaneously with the weight of the structure.After that,the optimization algorithm is implemented to identify the best position of the damper device in the structural frame to have the maximum effect and minimize the seismic structure response.To examine the performance of the proposed PSO-GSA optimization method,it has been applied to a three-story reinforced structure equipped with a seismic damper device.The results revealed that the method successfully optimized the earthquake energy dissipation systems and reduced the effects of earthquakes on structures,which significantly increase the building’s stability and safety during seismic excitation.The analysis results showed a reduction in the seismic response of the structure regarding the formation of plastic hinges in structural members as well as the displacement of each story to approximately 99.63%,60.5%,79.13% and 57.42% for the VSB device,RWD,NCSB device,and MAS device,respectively.This shows that using the PSO-GSA optimization algorithm and optimized damper devices in the structure resulted in no structural damage due to earthquake vibration.
基金Projects(51275138,51475025)supported by the National Natural Science Foundation of ChinaProject(12531109)supported by the Science Foundation of Heilongjiang Provincial Department of Education,China+1 种基金Projects(XJ2015002,G-YZ90)supported by Hong Kong Scholars Program,ChinaProject(2015M580037)supported by Postdoctoral Science Foundation of China
文摘To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.
基金This work is supported by National Natural Science Foundation of China(Grant Nos.61876089,61403206)by Science and Technology Program of Ministry of Housing and Urban-Rural Development(2019-K-141)+1 种基金by Entrepreneurial Team of Sponge City(2017R02002)by Innovation and entrepreneurship training program for College Students。
文摘In many fields such as signal processing,machine learning,pattern recognition and data mining,it is common practice to process datasets containing huge numbers of features.In such cases,Feature Selection(FS)is often involved.Meanwhile,owing to their excellent global search ability,evolutionary computation techniques have been widely employed to the FS.So,as a powerful global search method and calculation fast than other EC algorithms,PSO can solve features selection problems well.However,when facing a large number of feature selection,the efficiency of PSO drops significantly.Therefore,plenty of works have been done to improve this situation.Besides,many studies have shown that an appropriate population initialization can effectively help to improve this problem.So,basing on PSO,this paper introduces a new feature selection method with filter-based population.The proposed algorithm uses Principal Component Analysis(PCA)to measure the importance of features first,then based on the sorted feature information,a population initialization method using the threshold selection and the mixed initialization is proposed.The experiments were performed on several datasets and compared to several other related algorithms.Experimental results show that the accuracy of PSO to solve feature selection problems is significantly improved after using proposed method.
文摘This paper presents a technique for Medium Term Load Forecasting (MTLF) using Particle Swarm Optimization (PSO) algorithm based on Least Squares Regression Methods to forecast the electric loads of the Jordanian grid for year of 2015. Linear, quadratic and exponential forecast models have been examined to perform this study and compared with the Auto Regressive (AR) model. MTLF models were influenced by the weather which should be considered when predicting the future peak load demand in terms of months and weeks. The main contribution for this paper is the conduction of MTLF study for Jordan on weekly and monthly basis using real data obtained from National Electric Power Company NEPCO. This study is aimed to develop practical models and algorithm techniques for MTLF to be used by the operators of Jordan power grid. The results are compared with the actual peak load data to attain minimum percentage error. The value of the forecasted weekly and monthly peak loads obtained from these models is examined using Least Square Error (LSE). Actual reported data from NEPCO are used to analyze the performance of the proposed approach and the results are reported and compared with the results obtained from PSO algorithm and AR model.